Impact of Josephson junction materials on the performance of superconducting qubits

Event Date:
2024-09-26T10:00:00
2024-09-26T11:00:00
Event Location:
AMPEL Rm 311
Speaker:
Josh Mutus, Rigetti Computing
Related Upcoming Events:
Intended Audience:
Graduate
Local Contact:

Joshua Folk

Event Information:

Superconducting qubits are a leading modality for quantum computing, offering a favorable balance between coherence, gate times, scalability, and fidelity. I will explore the interplay between materials science and qubit performance, with a particular focus on how the materials used in Josephson junctions (JJs) affect qubit behavior. The frequency of a qubit is largely determined by the properties of JJs, which typically consist of amorphous oxide tunnel barriers. These barriers are also the likely location of most two-level systems (TLS) defects. Recently, we discovered an Alternating-Bias Assisted Annealing (ABAA) process that enables us to fine-tune JJs to achieve the desired frequency. Characterizing these ABAA post-processed JJs provides insight into the structural and chemical bonding uniformity of the amorphous oxides after ABAA processing, as well as the impact on qubit performance and TLS density.

 

Add to Calendar 2024-09-26T10:00:00 2024-09-26T11:00:00 Impact of Josephson junction materials on the performance of superconducting qubits Event Information: Superconducting qubits are a leading modality for quantum computing, offering a favorable balance between coherence, gate times, scalability, and fidelity. I will explore the interplay between materials science and qubit performance, with a particular focus on how the materials used in Josephson junctions (JJs) affect qubit behavior. The frequency of a qubit is largely determined by the properties of JJs, which typically consist of amorphous oxide tunnel barriers. These barriers are also the likely location of most two-level systems (TLS) defects. Recently, we discovered an Alternating-Bias Assisted Annealing (ABAA) process that enables us to fine-tune JJs to achieve the desired frequency. Characterizing these ABAA post-processed JJs provides insight into the structural and chemical bonding uniformity of the amorphous oxides after ABAA processing, as well as the impact on qubit performance and TLS density.  Event Location: AMPEL Rm 311