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Using results from the dielectric theory of polar solids and liquids, we calculate the mesoscopic,

spatially-varying dielectric constant at points in and around a protein by combining a

generalization of Kirkwood–Fröhlich theory along with short all-atom molecular dynamics

simulations of equilibrium protein fluctuations. The resulting dielectric permittivity tensor is found

to exhibit significant heterogeneity and anisotropy in the protein interior. Around the surface of the

protein it may exceed the dielectric constant of bulk water, especially near the mobile side chains

of polar residues, such as K, N, Q, and E. The anisotropic character of the protein dielectric

selectively modulates the attractions and repulsions between charged groups in close proximity.

1. Introduction

A quantitatively accurate theory for the dielectric properties of

polar liquids and solids took form only after several decades of

research, starting with the early work of Lorentz1 and reaching

predictive power with the theories of Kirkwood and Oster for

fluids2,3 and Mott and Littleton4 for solids. Debye’s original

formulation5 followed Langevin’s theory of paramagnetism

and quantifies the earlier observations of Clausius and Mossotti

for the dielectric constant e of gases:

e� 1

eþ 2
¼ 4p

3
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3kBT
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Here the sum is over species of molecules, ai and mi are the

electronic polarizability and permanent electric dipole moment

of species i, ni is the number per cm3 of species i, and kBT is

Boltzmann’s constant times the temperature. This analysis

yields a dielectric constant which increases as temperature is

decreased due to the more effective alignment of dipoles

against thermal randomization.

However, for a positive dielectric constant the left hand side

of eqn (1) is bounded by unity, while the right hand side is not.

In fact if one substitutes known values for the electronic

polarizability, molecular dipole moment, and density at room

temperature for a substance such as water, eqn (1) can only

be satisfied by a negative dielectric constant. This is a con-

sequence of the assumption of the Lorentz field for the local

field in the model, i.e. the model predicts ferro-electricity for a

substance such as water below a temperature Tc = 4pnm2/
9kBT E 1900 K analogous to Weiss ferromagnetism.

Onsager’s treatment of the local field resulted in a reaction

field which could polarize a molecule but not align it, and a

cavity field which could provide torque on a dipolar molecule.6

This theory removed the dielectric catastrophe, but still predicted

dielectric constants about half of the experimental values for

substances such as water. Oster and Kirkwood’s more explicit

treatment of dipole–dipole correlations2 predicted dielectric

constants within a few percent for water by treating the

alignment of a water molecule dipole with that of its neighbors.3

This treatment results in an increased dielectric constant

when molecules align their neighbors in a ferromagnetic

fashion, with Kirkwood’s expression for the dielectric constant

(for 1 species)

ðe� 1Þð2eþ 1Þ
12pne

¼ aþ m2

3kBT
1þ n

Z
vo

dO cos ge�W=kBT

� �� �
ð2Þ

reducing to that in the Onsager theory when the local effective

dipole moment is treated at the mean field level, determined by

the reaction field. In eqn (2), W is the potential of the mean

force acting on a pair of molecules, g is the angle between the

dipole moments of a pair of molecules, and the integration is

over all relative orientation and positions of the molecules

within a sphere of volume vo.

A natural application for the theory of polar dielectric

media is the study of electrostatic effects in biomolecules such

as proteins, as these effects are key to their stability and

function. A complete understanding of these effects requires

an accurate description of protein dielectric properties, which

determine the strength of interactions between charges in

the protein. However, unlike a homogeneous liquid whose

dielectric constant does not vary throughout its volume, the
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dielectric response of a biomolecule varies from site to site

depending on the local molecular structure. Furthermore,

complex constraint forces within the molecule may cause only

partial alignment of local dipoles with an applied external

field, introducing anisotropic effects.

The importance of biomolecule dielectric behavior in such

fields as protein–protein interactions and enzyme reaction

catalysis has led to interest in a method for calculating protein

dielectrics that accounts for their varying local behavior.

Explicit microscopic approaches to the calculation of the

dielectric constant by extracting fluctuations appearing in

Kirkwood–Fröhlich theory from molecular dynamics (MD)

simulations have been developed by Wada et al.,7 van Gunsteren

et al.,8 and Simonson and Perahia et al.9–11 Masunov and

Lazardis12 have calculated the potentials of the mean force

between pairs of charged amino acid side chains and found

that a uniform dielectric is unsatisfactory for explaining the

results of explicit simulation. The results of explicit and

implicit solvation for calculating protein pKa’s have been

compared,13 with the conclusion that the larger scale, anisotropic

structural reorganization that can accompany (de)protonation

is difficult to capture using Poisson–Boltzmann (PB) methods,

but may be captured using molecular dynamics with a generalized

Born implicit solvent. Voges and Karshikoff14 have provided a

theory that enables the iterative calculation of a heterogeneous

(but isotropic) dielectric constant in a small cavity containing

part of a protein and have applied it to the calculation of

amino acid dielectric constants.

The advent of automated PB equation solvers like APBS15

and DelPhi16 has enabled the rapid calculation of protein

electrostatic energies. PB methods are used extensively in

biomolecular simulation, including ligand docking studies

for high-throughput drug screening17 and implicit solvent

molecular dynamics.18 However, PB calculations commonly

assume a constant internal dielectric environment for proteins

which neglects local variation in susceptibility, while measure-

ments such as pKa shifts indicate a much richer profile for the

effective dielectric constant in proteins.19,53 It is thus desirable

to calculate the local dielectric constant at all points in and

around a protein to use as input for these programs to enable

a more accurate and descriptive calculation of protein electro-

static energies. Moreover, knowledge of the local dielectric

function allows for an understanding of the mesoscopic

structure of the susceptibility within and around a protein,

which has consequences for many aspects of stability, folding,

binding, and biological function. For these reasons we have

developed a mesoscopic-scale theory to calculate the spatially-

varying and anisotropic static dielectric constant in and

around a protein. This theory has been used previously to

investigate electrostatic contributions to regional stability in

the prion protein.20

2. Results and discussion

2.1 Protein dipoles in an applied field

The first step in deriving the local dielectric constant of the

protein is to characterize its response to applied electric fields.

The protein can be thought of as an assembly of fluctuating

dipoles at locations determined by the native protein fold.

Unlike in the liquid case, where these dipoles are relatively free

to orient with the prevailing applied electric field (subject to

local organization of the liquid), stereochemical intramolecular

forces constrain the motion of the dipoles in the protein, so

they may only partially align with an applied field. Further-

more, dipoles in the protein do not move independently, as the

coupling of fluctuations due to the above-mentioned steric

constraints in the protein may cause the dipoles to react in a

coordinated fashion.

In principle, any two atoms participating in a covalent bond

in the protein may be viewed as a dipole, but the motions of

atoms within the backbone and side chains of residues in a

protein are highly correlated by the covalent bond network.

We will thus define the effective dipoles as groups of atoms in

each residue backbone or side chain. Exceptions are made for

glycine, alanine, and proline, since their side chains are

structurally incapable of motion substantially independent of

their backbones; all the atoms in each one of these residues are

considered as a single dipole.

In the absence of an applied electric field, these dipoles

undergo thermal fluctuations that are not necessarily isotropic:

there may be greater average motion in some directions

compared to others. For example, fluctuations perpendicular

to the time-average dipole orientation are typically greater

than those parallel to the average dipole. Thus each dipole has

its own system of principal axes characterizing the response of

its three components to an external field.

2.2 Internal protein constraints

Let the protein be composed of N dipoles, each with dipole

moment components in the x, y, and z directions. Construct a

vector l of length 3N that contains the deviations of all the

protein dipole moment components from their equilibrium

values, such that the x, y, and z components of the ith dipole’s

deviations are m3i�2, m3i�1, and m3i respectively. This means

that hli0 = 0, where the angle brackets refer to the thermal

average in zero external field.

In the presence of a local electric field E = (Ex,Ey,Ez) which

can vary dipole to dipole, the change in free energy by

perturbing the configuration of dipoles from their equilibrium

positions is (to 2nd order in l)

DG ¼ 1

2

X3N
i;j¼1

Kijmimj �
X3N
i¼1

Eimi ð3Þ

where Ei are the components of the vector E = (E1,E2,. . .En)

representing the local field on all N dipoles, and Kij are the

second derivative matrix elements d2G/dmidmj|0 evaluated at

the equilibrium position l = 0.

The probability for the system to occupy such a configura-

tion is proportional to exp(�DG/kBT). Thus the averages of

the induced dipole moment and cumulant matrix elements can

be found by diagonalizing the free energy,21 and are given by

hmimjic = kBT(K
�1)ij (4a)

hmii ¼
X
j

ðK�1ÞijEj ¼
1

kBT

X
j

hmimjicEj : ð4bÞ
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Since the average of l is 0 in the absence of an external field,

the cumulants above may be replaced by the unperturbed

averages h. . .i0.
So long as the free energy in the above analysis is linear

in the field strength (linear response), the statistics of the

dipole fluctuations need not be Gaussian, and consequently

the local potential of the mean force need not be harmonic.

To see this, it is sufficient to consider an isolated dipole

l in the presence of a local field E, with an arbitrary

unperturbed probability distribution Po(l) and hlio = 0. In

the presence of a weak field the probability distribution

becomes Poe
�l�E/kBT E Po(1 � l�E/kBT). The thermal average

of the dipole moment l = m1ı̂ + m2ĵ + m3k̂ then has com-

ponents hmii =
P

jhmimjiEj/kBT, which is precisely eqn (4b).

Thus, whatever the statistics of the dipoles, eqn (4b) gives the

average moment in the presence of a weak field.

In the all-atom molecular dynamics simulations of proteins

described below, it was observed that most dipoles were tightly

bound by harmonic potentials, with mean fluctuations much

less than the total dipole magnitude. However, some polar

amino acids near the protein surface underwent significant

rearrangement due to the lack of steric constraints. In this

sense the protein is more liquid-like on its surface than in its

interior. The probability distributions of all dipoles in simula-

tion were compared to normal distributions by the Lilliefors

test.22 Fig. 1A shows the distribution of Lilliefors test statistics

from all of the dipole probability distributions of ubiquitin,

taken from a 20 ns all-atom classical molecular dynamics

(MD) simulation in an explicit solvent of the native state of

ubiquitin. Simulations were performed using the NAMD

simulation package,23 with the CHARMM22 force field.24,25

More details of the simulation protocol are described in the

section ‘‘Implementation in a Protein System’’ below. The

significant majority of dipole probability distributions closely

followed the normal distribution, although some dipole modes

exhibited decidedly non-Gaussian potentials, often bi- or

tri-modal, indicating multiple energetic minima for these dipoles.

These multiple minima correspond to different metastable

configurations of the amino acid side chain (Fig. 1A inset),

however as mentioned above linear response does not require

the fluctuation distribution to be Gaussian.

2.3 Collective dipole fluctuation modes

If the motion of each dipole were uncorrelated with other

dipoles, then the eigenbasis of fluctuations would be the

principal axes of the individual dipoles. The actual eigenbasis

taken from all-atom molecular dynamics simulations can be

projected onto this individual-dipole basis to determine the

degree of coupling between dipoles.

In the individual-dipole basis |fi, define a fluctua-

tion eigenvector |ci =
P

faf|fi, where by normalizationP
f|af|

2 = 1. Each modulus |af|
2 can be interpreted as the

probabilistic weight pf of the eigenvector |ci in the basis

vector |fi. Borrowing the concept from spin-glass theory of

the average cluster size of spin glass states,26 we let

M ¼ 1

3

X3N
f¼1

p2f

 !�1
ð5Þ

denote the degree of coupling between individual-dipole

fluctuation modes. When a mode is uncoupled, it has a weight

distribution given by a Kronecker delta and so M = 1/3.

If a mode is fully coupled to all individual-dipole modes,

pf = 1/(3N) and so M = N, the total number of dipoles.

Fig. 1B plots the distribution of M for ubiquitin. The

number of dipoles participating in each mode varies from

1 to 20, with 70% of modes containing less than 10 dipoles.

Thus dipole motion exhibits coordination between moderately

sized groups of neighboring dipoles, and only relatively few

dipoles move independently of other dipoles; these independent

dipoles tend to be less sterically constrained and reside on the

protein surface, as seen in the inset of Fig. 1B. It is therefore

important to consider collective dipole modes in proteins to

arrive at an accurate response relation.

2.4 Linear response relation for induced moments

We calculate the effective local dielectric constant at a point in

a protein by considering the equivalence between microscopic

and macroscopic descriptions of the electric response of nearby

media as depicted schematically in Fig. 2. In the microscopic

description, we imagine the matter within a region of radius

a of this point to have a dipole moment m and tensor

polarizability ��a, placed in a cavity of the same radius within

an environment consisting of various scalar dielectric con-

stants, accounting for the response of the water and/or protein

surrounding the cavity and represented generically as

eA,eB,eC. . . in Fig. 2. The average dielectric of the regions

surrounding the cavity is e1. In the macroscopic description,

this cavity is instead filled with a dielectric medium of permittivity
��e2, again surrounded by the dielectric e1 (see Fig. 2). Following
the approach taken by Voges and Karshikoff,14 we solve for
��e2 in terms of e1, m, ��a, and a.

In practice, we discretize the space in and around the protein

into a lattice with spacing b, with b typically about 1 Å. For

each lattice point at r we consider a spherical cavity centered at

r of radius a, with a typically a few Å. The cavity may contain

parts of several dipoles, and has inside it a local field E(r|a) due

to both the external field and the system’s response. All dipoles

in a given cavity are taken to experience the same total field.

We take the contribution of each dipole to the induced cavity

dipole moment to depend on the volume fraction of the

backbone or side chain containing the dipole that is within

the cavity. Let fA(r|a) be the volume fraction of residue A

inside the cavity centered at position r, given the cavity has

radius a. To obtain the static dielectric response, fA(r|a) should

be the time-averaged fraction of A in the cavity. The ith

component of the field-induced moment inside the cavity is

given by a sum over both residues and components. It is

clearest to write the sums separately, rewriting eqn (4b) as

hmAi i ¼ ðkBTÞ
�1PN

B¼1
P3

j¼1 hmAi mBj iEB
j for the ith component of

the dipole of residue A. The induced moment of the protein

dipoles in the cavity, mp(r|a), is given by the sum of the

induced moments of all residues weighted by the fraction of

those residues inside the cavity:

mpðrjaÞ ¼
XN
A¼1
hmAðrjaÞi �

XN
A¼1

fAðrjaÞhlAi: ð6Þ
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The cavity that determines the local dielectric may also be near

the surface of the protein, where it will contain a number of

solvent molecules (usually water). In this case the sum on

residues in the cavity includes a contribution due to the water

molecules inside it. The number of water molecules nw(r|a) in a

cavity is determined by taking the available volume in the

sphere but outside the protein, and dividing by the average

volume of a water molecule at STP.

The electronic polarizability of the media depends on the

proportions of protein backbones, side chains, and water in

the cavity. Analogously with the permanent dipole response,

the total electronic polarizability in the cavity is weighted by

volume fractions:

aðrjaÞ ¼
XN
A¼1

fAðrjaÞaA þ nwðrjaÞaw: ð7Þ

Scalar values of the electronic polarizability a for each residue

are taken from the literature27; they cannot be measured directly

from traditional classical MD simulations because atomic

partial charges are fixed by the CHARMM22 parameter set.

We take Kirkwood’s analysis as a starting point to determine

the contribution of water to the cavity’s dipole moment, in

which the induced moment due to permanent dipole reorienta-

tion is given by

mwðrjaÞ ¼ nwðrjaÞ
gp2

3kT
Ee: ð8Þ

In this equation, p is the permanent dipole moment of water

and Ee is the local effective field orienting the molecules. The

constant g arises from the Kirkwood–Oster nearest-neighbor

approximation of the term in parentheses on the right-hand

side of eqn (2). It has been calculated previously for water and

found to be 2.67.3 Constrained motion of water molecules,

relative to that in bulk,28 has been observed at the surfaces of

proteins.29,30 The heterogeneity of hydrogen bonding between

protein and water has been studied by Bagchi and co-workers29

with particularly long lifetimes observed near positively

charged residues, as well as reduced hydration layer rigidity

near functionally-relevant sites on a villin headpiece subdomain.

Such constrained and correlated motions may effectively

increase the local dielectric of water near the protein surface

if the local moments are positively correlated, and several

examples of this effect are discussed below. A detailed investi-

gation of the water structure at the protein surface and its

consequences on the dielectric is a topic of future work. Here

we make the simplifying assumption that water dipole correla-

tions are essentially the same as those occurring in bulk.

In what follows, a relationship analogous to eqn (8) is

derived with the refinement that the local electric field be

reinterpreted as a field proportional to the cavity field. In a

cavity containing protein and water, the local field Ee experienced

by the water and protein dipoles consists of a cavity field G

due to the externally applied perturbing field Eext and a

reaction field R due to the response of the medium outside

the cavity (with an assumed average scalar dielectric e1) to the

induced dipole within the cavity:

Ee ¼ Gþ R ¼ 3e1
2e1 þ 1

Eext þFðaEe þmÞ ð9Þ

Fig. 1 Dipole fluctuation statistics. (A) The distribution of Lilliefors

test statistics for ubiquitin dipoles. Values greater than the dotted line

indicate non-normal distributions with 95% confidence. Representative

normal and non-normal dipole distributions for the side chains of

Y59 and Q31, respectively, along with several molecular configura-

tions, are shown in the insets. The values of the Lilliefors test statistic

for these side chains are also indicated. (B) The distribution of the

spin-glass parameter M (a measure of the effective number of dipoles

involved in each fluctuation mode, see text) for the dipole fluctuation

modes in ubiquitin. Inset images show the residues involved in localized

and collective modes. Residues are color-coded so as to indicate

whether their motions are correlated (same color) or anticorrelated

(different colors).

Fig. 2 Schematic representation of the approach used to calculate

the dielectric constant ��e2. In the microscopic view, a cavity of radius

a containing media with induced dipole moment m and tensor

polarizability ��a is surrounded by a heterogeneous dielectric of various

permittivities (in this particular case eA. . .eH; the number of different

dielectric regions will depend on the sphere size and lattice point

spacing). In the macroscopic view, this cavity is instead filled with

an anisotropic dielectric tensor of permittivity ��e2 surrounded by

an effective homogeneous isotropic dielectric e1. In both views, an

arbitrary external electric field Eext is applied.
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Here, F = 2(e1 � 1)/((2e1 + 1)a3), a is the total electronic

polarizability of the cavity from eqn (7), and m = mp + mw is

the total dipole moment due to the positions of atomic nuclei

inside the cavity. Solving for Ee,

Ee ¼
1

1� aF
ðGþFmÞ � gðGþFmÞ; ð10Þ

where for convenience, g � 1/(1 � aF).

The total potential energy of the protein dipole component

in the cavity is the sum of the electric potential energy �mp�Ee

and the steric potential energy US(mp) = 1
2
KAB
ij mAi m

B
j , where the

implied sums on A and B run from 1 to N (the number of

BB + SC moieties) and the sums on i and j run from 1 to 3.

The steric potential constants Kij
AB taken from simulation

implicitly include the protein dipole self-interaction term

gFfAfBm
A
i m

B
i due to the effect of the protein dipole reaction

field on the moment mp itself. Using eqn (3), (6), and (10),

U(mp) =
1
2K

AB
ij mAi m

B
j � gFfAm

A
i m

w
i � gfAm

A
i Gi, (11)

where the cavity field is applied only to dipoles in the cavity,

resulting in the prefactor fA in the third term of eqn (11). The

total steric potential energy must be included to properly

account for the statistics of dipoles inside the cavity. Thus

eqn (11) can be thought of as a hybrid potential energy. The

potential energy of the water, on the other hand, is determined

only by the total effective field, as there are no internal steric

constraints assumed on its motion (except as embodied in

the Kirkwood g-factor in eqn (8)). This approximation can

be refined by explicitly considering the simulated statistics of

water molecules at the protein surface. The water dipole self-

interaction term gFm
w
i m

w
i is zero in the case of isotropic

polarizability a since the reaction field produced by the water

dipole is parallel to the dipole itself and therefore cannot apply

a torque to it. We neglect effects of the distensibility in

magnitude of the nuclear part of the water dipole moment.

The water dipole potential energy is

U(mw) = �gFfAm
A
i m

w
i � gmw

i Gi. (12)

Thus the potential energy of water and protein dipoles is a sum

of terms bilinear in the water and protein dipoles and linear in

the effective cavity field gG. This has the form of the problem

solved above in eqn (4b), so the ith component of the field-

induced water and protein moments in the cavity are

hmA
i i ¼

X3
j¼1

XN
B¼1
hmA

i m
B
j i0 þ hmA

i m
w
j i0

 !
gGj

kBT
ð13aÞ

hmw
i i ¼

X3
j¼1

XN
B¼1
hmw

i m
B
j i0 þ hmw

i m
w
j i0

 !
gGj

kBT
; ð13bÞ

where the time average h. . .i0 is taken in the absence of an

external perturbing field. We have used the generality of the

potential elaborated in the comments below eqn (4b). The

dipole polarizability to the cavity field is a property only of

correlations within the system itself. Only mutual reaction

fields influence the motion of the dipoles in this case. The

correlation functions involving water in eqn (13a) and (13b)

can be evaluated by direct integration. The integration for

protein dipoles is over all space, while it is confined to a sphere

of radius p for the water dipoles, which can reorient but

are fixed in magnitude. The potential energies in eqn (11)

and (12) appear in a Boltzmann factor with the cavity field

G = 0; those Boltzmann factors not containing Kij are small

compared to kBT and may be linearized to give

hmA
i i ¼

XN
B¼1

X3
j¼1

fAfB 1þF
nwgp

2

3kBT

� � hmAi mBj i0
kBT

gGj ð14aÞ

hmw
i i ¼

X3
j¼1

nwgp
2

3kBT

� �
dij þ

XN
A;B¼1

FfAfB
hmAi mBj i0
kBT

 !
gGj

ð14bÞ

Eqn (14a) and (14b) can be combined and written generally as a

matrix equation, with a nuclear polarizability tensor ��a relating

the effective field gG and induced moment m = mw + mp:

m(r|a) =
¼a(r|a)�g(r|a)G(r|a), (15a)

with components

��aABij ðrjaÞ ¼ fAfB 1þ 2F
nwgp

2

3kBT

� � hmAi mBj i0
kBT

þ dij
nwgp

2

3kBT

ð15bÞ

The quantities hmiAmjBi0 may be obtained directly from MD

simulations of the protein in the absence of an external field, as

described below.

2.5 The dielectric constant at an arbitrary point

With the response of permanent dipoles and polarizable

media in a cavity now established, we calculate the dielectric

permittivity tensor at a location r by following the recipe

outlined in Fig. 2. In a microscopic description, a set of

polarizable constituents with induced and permanent dipole

moments exist in a cavity of a heterogeneous dielectric

medium with various scalar dielectric constants. The present

theory approximates the medium external to the cavity by a

single scalar dielectric e1 equal to the average of the neighboring

effective scalar dielectrics over the surface of the cavity

(eA,eB,eC. . . in Fig. 2). The medium inside the cavity is assigned

a single tensor dielectric ��e2 because the polarizibility in the

cavity is a tensor. As described below, we take the effective

scalar value of the cavity’s dielectric to be the geometrical

average of its principal components.

The total field Ein inside the cavity at a position r is the

superposition of the cavity field, the reaction field, and the

permanent and induced dipole fields from the water and

protein,14 so

Ein ¼ GþFðaEe þ hmiÞ � r
aEe � r
r3
þ hmi � r

r3

� �
: ð16Þ

On substituting for hmi from (15a) and Ee from (10), the

potential inside the cavity is

Fin ¼ ½ð1þ gFaÞðI þ gF��aÞG� � rþ ½ð��agþF��agagþ agÞG� � r
r3
:

ð17Þ

The potential outside the cavity is formed by the superposition

of the potentials from the external field (taken to be uniform),
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the field due the cavity in the dielectric, and the field due to the

dipole in the cavity:

Fout ¼ �Eext � rþ a3
r

r3
�WEext; ð18Þ

where W is defined by

W � 9e1
ð2e1 þ 1Þ2a3

ð��agþF��agagþ agÞ � e1 � 1

2e1 þ 1
I : ð19Þ

Shifting to the equivalent macroscopic description of the

system as a dielectric with permittivity tensor ��e2 surrounded

by a dielectric with scalar permittivity e1, the potential in the

surrounding dielectric is found to be31

Fout ¼ �Eext � rþ a3ð2I þ e�11
��e2Þ�1ðe�11

��e2 � IÞE � r
r3
: ð20Þ

Equating the microscopic and macroscopic expressions for the

potential outside the cavity and solving for ��e2,

��e2 ¼ e1 2Wþ Ið Þ I �Wð Þ�1: ð21Þ

In the case where W is a scalar and the dipole response in

eqn (15a) is approximated by freely rotating Langevin dipoles

(a potentially severe approximation due to steric constraints in

the protein as mentioned above), eqn (21) reduces to that in

the theory of Voges and Karshikoff.14

2.6 Implementation in a protein system

To calculate the local dielectric constant according to the

approach described here, the first step is to obtain the matrix

of correlations hmiAmjBi0 appearing in eqn (15b) that describes

coupled fluctuations between the dipoles in the native

state. This is done with an all-atom classical MD simulation

of various proteins at 298 K using the CHARMM22

force field,23–25 with particle-mesh Ewald electrostatics and a

Lennard-Jones cut-off distance of 13.5 Angstroms. Proteins

are solvated in a box of explicit water molecules that exceeds

the dimensions of the native protein by 10 Angstroms on all

sides and has periodic boundary conditions. Basic residues

(Lys and Arg) are protonated, acidic residues (Asp and Glu)

are deprotonated, and histidines are neutrally charged to

reflect ionization conditions at pH 7. Na+and Cl� ions are

added to the solvent to achieve overall system charge neutrality

and an ionic strength of 150 mM. The simulation time step is

2 fs, and snapshots are taken every 1 ps for ensemble averaging.

As seen in Fig. 3B, a 1 ps interval is sufficient for dipole

positions to decorrelate from those in the previous snapshot.

The total simulation time required for convergence to reliable

values was typically 1 ns; longer simulations did not appreciably

change the distribution of correlations (Fig. 3C). All simula-

tions to calculate the spatially-varying dielectric function were

run for 2 ns. The dipole moment of each side chain and

backbone is calculated from the partial charges assigned to

atoms in the CHARMM force field, with distances to atoms

measured from the center of mass of the set of atoms.

As one would expect, components of the same dipole exhibit

significant autocorrelation (Fig. 3A diagonal), but there

are also significant cross-correlations between dipoles distant

in sequence but spatially close in the native protein structure.

A band of large fluctuations is typically observed at the N- and

C-terminus of the protein due to its high flexibility.

After MD simulation of dipole fluctuations is complete, the

protein is centered in a rectangular box with dimensions that

exceed the minimum and maximum x, y, and z coordinates of

the protein on all sides by at least the cavity radius a. The

dielectric constant is calculated at each lattice point within this

box (generally with a 1 Å spacing). The effective surrounding

dielectric constant e1 used for each point is determined by

averaging the scalar dielectric constant of all points in a shell

within 0.5 Å of the cavity boundary. An iterative solution is

necessary, since the dielectric constant at one point depends on

the dielectric constant at surrounding points. An approximate

function of e = 10 inside the protein and e = 78 outside was

used as an initial dielectric function for the first iterations, and

the system was then iteratively relaxed until the spatially-

varying dielectric function converged, typically after less than

20 iterations. We found that the final values of the dielectric

function were independent of the choice of initial conditions.

The dielectric calculation program is implemented in Tcl

and MATLAB (The MathWorks, Natick, MA). For a protein

of length 100 residues, the initial simulation to obtain the

dipole correlation matrix takes roughly 12 hours on an 8-core

2.5 GHz Intel Xeon workstation, while the calculation of the

dielectric constant afterwards takes less than 30 minutes

running on one core with a lattice point spacing of 1 Å. The

time needed to calculate the dielectric function varies linearly

with the number of lattice points.

2.7 Dielectric anisotropy

As demonstrated above, to properly capture the behavior

of a protein the local dielectric constant must be a tensor.

However, for many practical applications, it is desirable to

have an equivalent scalar dielectric constant that replicates the

behavior of the tensor as well as possible. The best choice

of method for converting the tensor ��e2 to the scalar e2
may depend on the situation, but as shown by Mele,32 the

transmission of free charge fields into an anisotropic dielectric

depends on the geometric mean of the dielectric constants in

each direction. That is, if l1, l2, and l3 are the eigenvalues

of ��e2, we define the equivalent scalar e to be e = (l1l2l3)
1/3.

(It is worth noting that if all three eigenvalues are equal, their

harmonic, geometric, and arithmetric means are the same.

Even if one eigenvalue exceeds the other two by 50%, among

the most pronounced anisotropy we have seen in our dielectric

calculations for 25 proteins, the difference between the harmonic,

geometric, and arithmetic means is still less than 5%. Thus the

choice of approach for averaging the principal axes of the

dielectric scalar to produce a scalar does not significantly affect

the quantitative result.)

2.8 Spatial variation in protein dielectric response

An example of a dielectric map for adenylate kinase

(PDB 1AKY) is shown in Fig. 4. Panel A depicts the scalar

dielectic function as a surface plot for a slice through the

protein, while panel B shows the scalar dielectric function as a

3D isosurface plot. Panel C depicts the regions of anisotropy
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in the dielectric function, which tend to be localized around

the surface of the protein.

A notable feature of the heterogeneous protein dielectric

theory is the presence of regions with relative permittivity

comparable to or exceeding that of water on the surface of the

protein, as can be seen from Fig. 4B. The solvation energy of a

charged group varies inversely with the solvent dielectric

constant, so the presence of these regions lowers the potential

energy of protein surface charges and enhances protein stability.

They arise from the presence of charged or polar groups with

large dipole moments on the protein surface that can fluctuate

extensively, as there are fewer native steric constraints restricting

their motion.

Large values of the dielectric constant approaching that of

the solvent have been observed on the surface of proteins,8,10

and values of the effective dielectric constant approaching 150

have been seen for salt bridges on the surface of barnase.33,34

Dielectric values much greater than water have also been

observed just outside the charged head groups of lipid bilayers.35,36

Having the surface of the protein surrounded by this region of

high dielectric constant would attenuate the projection of

electric fields from solution into the protein and vice versa,

potentially reducing electrostatic attractions or repulsions

Fig. 3 Dipole correlations and convergence in simulation.

(A) Correlation map for dipoles in ubiquitin. The area of the circles at

each coordinate (i,j) indicates the magnitude of the correlation function

hmimji averaged over snapshots of the system, for all pairs of dipole

components {mi,mj} in ubiquitin. The numbering of the components runs

from the N- to the C-terminus and accounts for the x-, y-, and

z-components of each backbone and side chain dipole. Blue indicates

hmimji > 0; red indicates hmimji o 0 (anticorrelation). (B) The correla-

tion coefficient between dipole products, corr(mi(0)mj(0),mi(t)mj(t)) as a
function of the time t between frames from the simulation. The dipole

motion decorrelates with a time constant of o0.5 ps. (C) The 1st, 2nd,

3rd, and 4th moments of the distribution of dipole correlation values

for a 10 ns simulation of ubiquitin. The dipole correlations converge to

a stable distribution after a total simulation length of 1 ns.

Fig. 4 The spatially-varying dielectric function for adenylate kinase

(1AKY). (A) The effective scalar dielectric constant on a horizontal

plane through the geometric center of the protein. (B) Dielectric

contours around the 1AKY structure, showing surfaces of e = 5,

25, 70 and 80. Regions inside the blue globules have dielectric

constants larger than that of water. (C) Representation of the

anisotropic dielectric constant ��e. The orientation of each ellipsoid is

given by the eigenbasis of the dielectric tensor at that point; the lengths

of the semimajor axes are directly proportional to the eigenvalues of

the tensor. Only ellipsoids with a difference between eigenvalues

of >25% are shown.
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between nearby proteins. This reduces the effects of generic

electrostatically-driven interactions which may be involved in

protein aggregation, potentially allowing for higher intra-

cellular protein concentration. A variable dielectric profile

on the protein surface may also allow for optimization of

specific binding strategies for ligands or protein complexes.

Additionally, the dielectric function calculated by the present

theory varies from over 100 in places on the protein surface to

as low as 2 in the hydrophobic protein interior (see Fig. 4B and

Fig. 6). Other studies have reported values in this range for the

effective dielectric constant of proteins: e E 2 for PARSE

parameter sets,37 eE 4 from bulk measurements of anhydrous

protein on application of the Kirkwood–Frohlich theory to an

idealized protein,38 e=2–8.9 by site-dependent thermodynamic

integration/molecular dynamics studies,39 and e E 20 for best

agreement with the experimental pKas of titrable groups in

proteins.40 The wide range of measured and calculated dielectric

constants in previous studies reaffirms the considerable

heterogeneity of protein dielectric response and may arise

from differences in the local environment where the processes

investigated take place.

The timescale for relaxation processes is also important.

Nuclear polarization due to protein dipole relaxation, which

dominates the dielectric response on the protein surface,

happens on a timescale of several picoseconds (see Fig. 3B);

electronic polarization due to electron motion, which occurs

throughout the molecule, happens much faster. Processes

occurring on a timescale longer than several picoseconds

would therefore experience both nuclear and electronic

polarization effects, while processes on shorter timescales

would experience only electronic polarization effects and a

consequently lower value for the effective dielectric constant.

Frequency-dependent relaxation plays a role in the electro-

statics of enzyme catalysis41,42; similarly, a frequency-dependent

friction coefficient has been seen to strongly affect reaction

rates or transition states in diverse systems ranging from

gas-phase and condensed phase reactions 43–45 to protein

folding.46,47 A frequency-dependent relaxation response could

be obtained from the spectrum of normal mode relaxation

in Fig. 1; investigation of these topics is reserved for future

studies.

2.9 Dependence on sphere size & lattice point spacing

The cavity radius a is an adjustable parameter in this approach.

A smaller value of a gives a more local description of the

dielectric response of the protein but suffers from the applica-

tion of a macroscopic description to the atomic-scale behavior

within a smaller cavity. Conversely, a larger value of a may

properly capture the effective macroscopic response of a

protein region but conceal important shorter-length pheno-

mena. In Fig. 5, the calculated dielectric function on a line

through the middle of ubiquitin is shown for various cavity

radii a. Based on these observations, we use a cavity radius of

3–4 Å as an optimal length scale to capture both the locally

average behavior and the mesoscopic dielectric structure.

The choice of cavity radius determines the spacing of lattice

points in the calculation, since it is necessary to have an

adequate density of them near the surface of the cavity to

accurately reflect the nature of the surrounding dielectric. We

have found that once the lattice point spacing is 1/4 of the

cavity radius, the dielectric map thus produced has converged

in that it no longer changes with an increasing density of

lattice points. We thus choose a lattice spacing of 1 Å.

2.10 Averaged dielectric properties

Protein N- and C-termini tend to have high flexibility, and for

1AKY the ends also have high net charge, so the dielectric

function tends to be larger in these regions as well. To see

whether this is a general trend, we plot in Fig. 6A the dielectric

constant averaged over proteins, as a function of sequence

index. So that different length proteins may be compared, the

index is chosen to start at zero, and is normalized by N � 1

where N is the number of residues. One can see from the plot

that the dielectric constant is, on average, significantly larger

at the ends of the protein.

Fig. 5 The effect of cavity sphere radius a on the calculated dielectric

function. Plots are taken on a line through the geometric center of

ubiquitin (1UBQ), for a = 2, 4, 6, and 8 Å.

Fig. 6 Mean properties of the protein dielectric function. (A) Average

dielectric constant as a function of fractional distance along the

protein backbone from a set of 21 proteins.48 Note the increased

permittivity at the N- and C-termini due to their large flexibility.

(B) Average dielectric constant as a function of the fractional distance

from the protein geometric centre.
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To investigate how the dielectric function varies as one

moves from a protein’s interior to its surface, we plotted the

scalar dielectric constant at a distance r from the geometric

center of the protein, averaged over the surface of the sphere

of radius r, i.e. he(r)i �
P0e(r)/4pr2Dr where all points in a

spherical shell between r and r + Dr are summed. A plot of

this is shown in Fig. 6B for several proteins indicated. To

investigate the general trend across proteins, this quantity was

then averaged again over a dataset of 21 proteins48 to obtain a

protein-averaged dielectric constant as a function of radius. To

compare differently sized proteins, the radius r was normalized

by the effective protein radius rp, defined as the radius of a

sphere that would have the same radius of gyration rG as the

protein, i.e. rp ¼
ffiffiffiffiffiffiffiffi
5=2

p
rG. The resulting quantity he(r/rp)iprot is

also plotted in Fig. 6B. It is worth noting that at a given radius

r within a given protein, there is significant scatter in the data.

3. Conclusions

Electrostatic interactions between charges are critical in

determining the stability of a protein. The strength of these

interactions is modulated by the local environment around the

charges, which can relax or polarize in response to the electric

fields. This ‘‘dielectric screening’’ weakens forces between

charges. We found that in the interior of a protein, the

dielectric is not constant but instead is spatially heterogeneous,

with many local minima and maxima. Moreover, our studies

show that the polarizability of an amino acid is context-

specific and large on the surface of the protein, where the

local dielectric constant can be even larger than that of water.

These regions can thus act as ‘‘stability shells’’ for charges,

because charges tend to migrate towards higher dielectrics. We

found that the dielectric response inside a protein tended to be

direction-dependent.

This theory fits in the middle of the microscopic-to-

macroscopic continuum of techniques to describe biomolecule

electrostatic properties. It is not fully microscopic in that

individual atoms are collected into backbone and side chain

dipoles to improve computational efficiency, and the applied

fields are assumed to be approximately uniform over distances

of a few Å; conversely, by allowing the dielectric charac-

teristics of a protein to vary throughout its volume it captures

subtleties in electric effects that a purely macroscopic model

would efface. It is useful to have a robust and versatile tool for

capturing much of the microscopic electrostatic behavior in a

simple parameter like a locally-varying dielectric constant,

which may then be refined by MD simulation or density

functional methods to explore interesting or noteworthy effects

identified by the mesoscale method. An alternative approach

of extracting local electrostatic properties directly from

all-atom MD simulation often requires the subtraction of

large quantities of comparable magnitude, introducing large

errors that require long simulations to satisfactorily average.

Moreover, the most popularMD force fields are non-polarizable,

so they do not account for the effects of electronic polariz-

ability which are integrated into this method. Polarizable MD

force fields tend to be computationally demanding due to the

need to frequently recalculate charge distributions, so that

correlations between electronic polarization and relatively

long time-scale nuclear motions are difficult to characterize

at present.

On a practical level, this theory requires only a brief (1–2 ns)

equilibrium simulation of the protein of interest. Calculation

of the protein dielectric map can therefore be accomplished on

a single workstation in 1 day, enabling a rapid analysis of

several targets when needed. The low computational cost of

this method is particularly important when studying large

proteins or oligomeric protein complexes, for which longer-

length MD simulations as a means of obtaining electrostatic

energies may be impractically slow and a continuum electro-

statics approach is therefore more appropriate. To increase the

speed for large multiprotein simulations, the correlation

matrices for individual proteins, or subsets of the system including

protein interfaces, may be obtained in isolation and then

appropriately combined to produce an overall dielectric map.

Salt bridge formation and disruption is known to play an

important role in the misfolding of amyloid-b;49–52 it is also

instructive to investigate the significance of electrostatics in

other misfolding-prone proteins. The theory developed here

has been applied to the prion protein to elucidate the role that

salt bridges and hydrophobic transfer energies may play in its

misfolding.20 Salt bridges known to be absent in disease-

causing human mutants of the prion protein were found to

be among the strongest present in the protein, so that the

human mutants were electrostatically the least stable of those

proteins studied. Conversely, the prion protein with the most

stable salt bridges belonged to a species known to be resistant

to prion disease (frog). It was also demonstrated that a

Coulomb law with a single local effective dielectric constant

was insufficient to fully capture salt bridge energetics, which

necessitated the calculation of the full dielectric map to

accurately predict the strength of salt bridges.

The utility of the dielectric calculator extends to any protein

system in which electrostatics may play a role. Prominent

examples include protein interactions with polyanions like

DNA or RNA, protein–protein recognition and binding,

oligomerization and aggregation, and membrane protein

transport and selectivity. Furthermore, this approach is not

limited to using water as a solvent, as solvent conditions in

simulations may be tuned to reflect different environments

where needed. We have at present only calculated dielectric

profiles for natively folded ensembles, but the same technique

could be applied to partially folded or misfolded structural

ensembles.

In principle, screened interaction energies may be obtained

directly from all-atom MD; however, the present theoretical

framework may provide a clearer intuitive picture of why certain

interactions may be strong or weak within the protein. While the

present theory improves the quantitative description of protein

dielectric response, we are currently limited in the application of

our theory by the absence of a Poisson–Boltzmann equation

solver capable of handling an anisotropic dielectric function;

only an approximate isotropic (though heterogeneous) dielectric

function can be used at present. We are currently developing a

tool capable of accounting for such anistropy to enable the

accurate calculation of electrostatic energies and plan to apply it

to the study of protein pKa prediction, salt bridge energies, and

protein thermodynamic stability.
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Calculation of electrostatic energies by continuum electrostatics

methods requires a description of the spatially-varying

dielectric constant for the system under study. We have

presented a robust tool to calculate this dielectric function

in a protein–water system that accounts explicitly for the

complex dynamic properties of protein and solvent dipoles.

The method may be straightforwardly generalized to any

biomolecule–solvent system. Heterogeneity and anisotropy

are important characteristics of the protein dielectric, and

strongly affect the electrostatic interactions that govern

protein stability. Modulation of dielectric heterogeneity and

anisotropy, through the evolution of residue fluctuations tailored

to specific tasks, may provide a mechanism to simultaneously

satisfy requirements for protein stability and function.
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