
B4. Gauge Field Theory

It is a striking fact about Nature that there exist gauge fields which play a key role in
mediating interactions. At the ”fundamental level” of particle physics one has the electro-
magnetic field, the various fields involved in the standard model, and the gravitational field.
In various areas of condensed matter physics it has also been found useful to introduce gauge
field descriptions of certain kinds of collective modes.

It is not possible to survey all of these. In what follows I will (i) discuss some of the
underlying general features of all gauge fields, and why we have them, then (ii) discuss how
they are described in a path integral formulation, using the ideas first developed by Fadeev
and Popov. I will show how this works in both Abelian gauge theories (like QED) and in
non-Abelian theories (the Yang-Mills model), along with brief remarks about the electroweak
theory. I will then give a brief description of gauge theory for a condensed matter system.
It is not possible to go into great detail here - there is no space - but we can at least see how
these applications come about.

B.4.1 GAUGE FIELDS - GENERAL FEATURES

The long history of this topic means that before we launch into the modern formulation
of the theory, it is necessary to look at some more general aspects of the theory. We begin by
a quick resumé of some of the history, followed by a comparison of the classical and quantum
versions of electromagnetic theory. A key point emerges from this comparison: there is a
crucial difference in the role played by the electrodynamic gauge potential Aµ(x) in the 2
versions, as shown in the Aharonov-Bohm effect, which is discussed thoroughly here.

B.4.1 (a) SOME HISTORICAL REMARKS

the discovery of the electromagnetic field and of the General Relativistic description of
spacetime also ushered in the idea of gauge fields, in early work by Weyl - we have known
since the 1960’s that they are here to stay. The discovery of QM, and the slow development of
QFT made it clear that the quantized versions of such fields mediated interactions in physics
- the EM and spacetime fields being bosonic, with spin-1 and spin-2 respectively. Once the
spin-statistics theorem was first given (by Pauli) it was also clear that only bosonic fields
could be associated with classical macroscopic force fields. By the early 1960’s (notably in the
work of Weinberg) it was known that the only consistent theories of massless bosonic fields
had to be either spin-0 (Higgs field - given a mass by the ”Higgs” mechanism, actually first
discussed by PW Anderson and N. Bogoliubov), spin-1 (EM field), or spin-2 (gravitational
field). In condensed matter theory, the key mechanism needed to give these gauge fields a
mass (i.e., a finite energy gap) was found - the appearance of an ”order parameter”, a concept
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first defined by Landau and Lifshitz in 1935, and developed with great effect by Landau, and
later by others, including London(1938), and BCS and Bogoliubov (1956-1962). Anderson’s
paper, with the hypothesis of the Higgs boson, appeared in 1963. The papers of Higgs, and
of Englert and Brout, were all written and published in 1964, and very quickly followed by
papers of Kibble (1964) and Guralnilk and Hagen (1964). The appelation ”Higgs boson” is
a misnomer.

However, there were serious mathematical problems, already noted in the 1950’s in the
context of QED. These concerned the renormalizability of QED, and the practical task of
renormalizing calculations of specific physical quantities. The very small coupling constant in
QED made practical calculations tractable, but the same was not true of the weak or strong
interactions - by the late 1950’s many physicists were in despair over the application of QFT
to these interactions, and Landau and others led the way to alternative formulations, such
as the S-matrix theory (or ”bootstrap” theory), reminiscent of behaviourist ”black box”
psychology. This detour wasted the time of many physicists (although it produced some
useful mathematics), until the tide began to turn in 1966-1967.

This change of attitude, and the ”rediscovery of field theory” happened in a curious
fashion. There were two key developments. First, the remarkable paper of Yang and Mills
on 1954, which generalized the idea of the U(1) gauge transformation used in QED to an
SU(N) gauge transformation. This idea was largely ignored at the time since it predicted
massless bosons as intermediaries of the strong force (and mesons are not massless!). Second
was the slow development of General Relativity (GR). the late 1950’s, very few physicists
(with the exception of astrophysicists in the UK, Dirac, the Russians surrounding E. M.
Lifshitz, and those in the former circle of Einstein in the USA) paid any attention to gravity
or to GR. This astonishing neglect showed how narrow-minded some communities in science
can be; but it also arose because GR seemed to have little relevance to earth-bound physics,
and moreover, seemed to be quite irreconcilable with QM. At that time, only Einstein was
talking publicly about his idea of a ”unified field theory”.

Curiously it was Feynman who first broke away from this mindset, at the Chapel Hill
conference in 1957, where he argued, using thought experiments, that gravity had to be
quantized. In a period of intense work between 1957-1963 he tried to do this, but ran into
a fundamental problem - gravity is non-renormalizable. It is a matter of some mystery why,
after the remarkable sucess Feynman had using path integral methods on both superfluid
4He and the polaron problem, in the period 1952-1956 (diagrams are almost useless for these
systems), that in the study of gravity he should abandon path integrals for the ”SHut Up
And Calculate” (SHUAC) method of diagrams - and this is what he did. His approach led
to the discovery of ghosts in gauge field theory, and was pursued to a successful but almost
unreadable conclusion by B. de Witt (1964-1967); but it was completely unusable for any
calculations.

All this changed in the period 1967-1970 with three key developments. First, in 1966-
1967, Fadeev and Popov succeeded in formulating gauge field theory in path integral language
- not just for QED, but also for Yang-Mills theory, and even in principle, for gravity. The
result was equivalent to deWitt’s (published a week later), but in contrast, was simple to
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understand and use. Second, in 1967-1968, Salam and Weinberg separately published the-
ories unifying the weak and EM interactions into one ”electroweak” gauge theory. This
theory incorporated the yang-Mills idea of non-Aberlian gauge fields, and the Higgs mech-
anism to give the gauge bosons a mass. Nobody paid any attention to it until 1970, when
’t Hooft, a beginning PhD student in Utrecht, showed - to everyone’s astonishment - that
the Salam-Weinberg theory was renormalizable; and then, in a tour de force, he showed how
to do calculations with it, using a combination of path integral methods and ”dimensional
regularization”, a technique introduced by ’t Hooft and his supervisor Veltman (and found
by others independently at around the same time).

It is hard to imagine what Feynman’s reaction must have been when he saw what he
might have achieved, had he stuck with his own path integral methods!

All of this work was subsequently developed into what is now the ”standard model”.
The key further element to be found was the discovery of asymptotic freedom in the strong
interactions (mediated by gluons, with a role also played by other bosonic fields). This
discovery was actually made by ’t Hooft in 1972, but he was discouraged from publishing it
by Veltman; it was rediscovered by Gross and Wilczek in 1973, and also by Politzer in 1973
(whose supervisor, Coleman, was in contact with ’t Hooft).

At the same time in condensed matter physics, the idea of the ”gauge principle” was
being applied to various systems. Here the impact was less clear, because we always have a
”more microscopic” theory which does not require the gauge formulation; and gauge theories
are often hard to work with. Thus, e.g., the gauge theories of high-Tc superconductivity and
of the FQH (Fractional Quantum Hall Liquid) have had little practical impact. However
they have motivated mainly interesting new developments, and the idea of ”spontaneously
broken gauge symmetry”, with the appearance of an order parameter, is central to all of
condensed matter physics. Indeed, in focussing on this, CM physicists are really returning
to the basic original idea of gauge theory, which goes back to Weyl in the 1920’s, viz., that
there had to be an apparent arbitrariness in the way that we parametrize physical variables
such as phase, or even length and time in spacetime. In classical physics these variables
really are redundant - they are eliminated by fixing a ”standard of measurement”. But this
is not so in a quantum theory.

This difference between classical and quantum physics, in the role played by a gauge
field, is crucial. So let us now see how it happens, in the context of one of the simplest
gauge theories, viz., QED and the quantized EM field. The remarks we make here arose
originally from the analyses of Yang-Mills in 1954, of Aharonov and Bohm in 1957-59, and
their subsequent elaborations by many authors.

B.4.1 (b) THE AHARONOV-BOHM EFFECT

When first proposed in the late 1950’s, this analysis by Aharonov and Bohm caused huge
controversy (NB: the mathematical analysis was actually done by MHL Pryce in Bristol,
who later spent the years 1968-2001 at UBC). This was not least because Bohm, a brilliant
young protegé of Oppenheimer during the war years, had been expelled from Princeton and
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from the USA in the early 1950’s, accused of being a communist during the McCarthy years.
With the help of Einstein and Pryce, then both at Princeton, Bohm went first to Brazil and
then to Israel; Pryce then recruited him to Bristol in the UK in the late 1950’s.

There are several key works by Aharonov and Bohm; the one we will be looking at
concerns gauge fields. You may also find it interesting to look at Feynman’s lectures in
Physics, Vol. 3, on this - Feynman was one of the early supporters of Bohm and his work.

(i) Particle on a Ring: Consider a situation where a single non-relativistic particle is
forced to move on a 2-dimensional circle of radius R0 - such a situation is now easy to organize
with mesoscopic rings or superconducting SQUIDS, or quantum wells, or even optically with
photons. However when Chambers did the first experiment in 1961 it was not so simple.

The quantum mechanics of the problem is quite straightforward, and easily done using
the Schrodinger equation. The Hamiltonian is assumed static; then

H =
1

2m

(
p + qA(r)

)2
+ q φ(r) (1)

and we will assume that a flux Φ is enclosed inside the ring, i.e., that∮
c

dl ·A(l) = R0

∫
dθA(θ) = Φ (2)

This is not actually the problem solved by Aharonov and Bohm, and it is easier to solve
then their scattering problem. Notice that the full EM Lagrangian, derived from H by
canonical transformation, viz.,

L =
1

2
mṙ2 + qA(r) · ṙ− q φ(r) (3)

where the momentum is

p =
∂L
∂ṙ

; = mṙ + qA(r) (4)

can be replaced by a truncated version only valid on the 2-dimensional ring of radius R0.
Let us assume that the electrostic potential φ(r) = φ0, a constant (no electric field). Then,
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on the ring, we have

L → 1

2
mṙ2 + q ṙ ·A(r)

→ 1

2
I0θ̇

2 + q R0θ̇A(θ) (if |r| = R0) (5)

where the ”moment of inertia”
I0 = mR2

0 (6)

(i) Consider first this problem when Φ = 0; we just have a particle circulating on a ring,
with

H0 = L0 =
1

2
I0θ̇

2 (7)

Then the normalized solutions to the Schrodinger equation:

Hψl(θ) = εlψl(θ) (8)

are given by

ψl(θ) =
1√
2π

eilθ (9)

where l = 0, ±1, ±2, . . . etc., is an integer (the angular momentum quantum number), and
θ is, as above the angular coordinate. Here we can treat it as compact, i.e., 0 ≤ θ ≤ 2π.

The propagator for the particle is also easily found; we have

G(θ1θ2; t1t2) = G(θ, t) =
∑
l

ψl(θ)ψ
∗
l (θ)e

i
~ ε

0
l t

=
∑
l

∫ ∞
−∞

dω

2π

ψl(θ)ψ
∗
l (θ)

ω − ε0l
(10)

where the eigenvalues are just

ε0l =
~2

2I0

l2 (11)

Using either form in (10), we get the result

G(θ, t) =

(
I0

2πi~t

) 1
2
∞∑

l=−∞

exp

{
i

~
I0

(θ + 2πl)2

2t

}
(12)

which we can write in more compact form as

G(θ, t) =

(
I0

2πi~t

) 1
2

e
i
~ I0

θ2

2t Θ3

(πI0θ

~t
;

2πI0

~t
)

(13)
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where Θ3(z, t) is the biperiodic Jacobi θ-function, defined in the complex plane z, and with
the series representation

Θ3(z, t) =
∞∑

n=−∞

ei(πtn
2+2zn) (14)

i.e., a discretized version of a Gaussian integral.
Why do we have such a complicated result? The first part of (13) looks just like a free

particle of mass I0; so where does the Jacobi θ-function come from? In this calculation it
comes from the compactness of the variable θ; we are dealing with a 1-d ”particle in a box”,
with periodic boundary conditions. But now we can rederive this result in a quite different
way, extending the domain of θ so that −∞ < θ < ∞. Let’s rederive the result (13) using
path integrals. Then we have

G(θ, t) =

∫ θ(t)=θ

θ(0)=0

D r(t) e
i
~S[r,ṙ] = A(t) e

i
~Scl(θ,t) (15)

where A(t) is just the fluctuation determinant for a particle of mass I0 in free particle motion:

A(t) =

(
I0

2πi~t

) 1
2

(16)

Now, however, we must be careful with the classical action. Recall that we are supposed
to sum over all paths. In Fig(a) at the top of the page we see 2 simple paths which begin at
θ(0) = 0, and terminate at θ(t) = θ. Notice that in both cases the winding number n is zero.

However, this is not true of the path in Fig(b). This has winding number n = 1. And
yet this path must also be included in G(θ, t).

The simplest way to then derive the answer for Scl(θ, t) is to either (a) note that any
path beginning at θ(0) = 0 and ending at θ(t) = θ can be decomposed into a path going
from θ(0) = 0 to θ(τ) = 0, where τ ≤ t, and then another path going to θ(t) = θ; but we
now sum over all possible winding numbers for the first at these 2 paths. Or else (b), we just
”unfold” the ring, as shown in the figure below. Now in this figure we see that any point on
the line at

θ
′
= θ + 2nπ, n = 0, ±1, ±2, . . . (17)
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must be identified with θ, and we must then sum over all paths leading to any of these
points. The paths shown on the previous figure are shown again below.

However it is clear from this diagram that we are dealing with a free particle on the line,
and so we immediately find that

e
i
~Scl(θ,t) =

∞∑
n=−∞

e
i
~ I0

(θ+2nπ)2

2t (18)

have summed over the different winding numbers. Inserting (18) and (16) into (15), we again
recover (13).

(ii) Now let’s go to the finite flux case. The energy levels are shifted, and the eigenfunc-
tions change; we have

ψl(θ, ϕ̄) =
1√
2π

ei(l+ϕ̄/2π)θ

εl(ϕ̄) =
~2

2I0

(l + ϕ̄/2π)2 (19)

and from this we can derive the new answer. Before doing so, notice a crucial point. The
answer does not depend on how the flux is distributed inside the rings, or even on whether
the flux density (i.e., the magnetic field) is finite at the ring itself - it depends only on the
total flux, or rather, the ”dimensionless flux” ϕ̄, defined as

ϕ̄ =
q

~

∮
dl ·A(l) =

2πq

~
Φ = Φ/Φ0, where Φ0 = h/q (20)

and Φ0 = h/q is the flux quantum for charge q.
From here on it is clear that for a path with winding number n, we must add a phase nϕ̄
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to the action exponent, and so now we get

G(θ, t; ϕ̄) =

(
I0

2πi~t

) 1
2
∞∑

n=−∞

exp

{
inϕ̄+

i

~
I0

(θ + 2nπ)2

2t

}

=

(
I0

2πi~t

) 1
2

e
i
~ I0

θ2

2t Θ3

(
πI0θ

~t
− ϕ̄

2
;

2πI0

~t

)
(21)

and in both forms of this answer, we see what is already obvious from the new eigenfunctions
and energies in (19), i.e., that the flux has shifted the answer - it is a ”phase shift” operator.

(ii) Charged Particle scattering off a flux tube: Now let’s go to the problem that
Aharonov and Bohm actually looked at in their famous paper. This problem is shown below
- we have an infinitesimal flux tube, still carrying flux Φ, but now confined to a very thin
filament, which we will treat as a δ-function in 2-d space. We then have

H =
1

2m

(
ρ+ qA(r)

)2
(22)

where

A(r) = Φ
ẑ × r̂
2πr

= ϕ̄Φ0
ẑ × r̂
2πr

= θ̂
Φ

2πr
(23)

where ẑ and r̂ are unit vectors, as is θ̂. To make the point even more clearly, let’s surround
the flux tube at the origin by an infinite potential barrier outside the flux tube, but with
a radius r0 which we will also take to be infinitesimal. Then nothing from outside can
penetrate, and the flux tube is isolated from the outside world.

And yet, from what we have done above, we know that even though the electric field
E(r) = 0 everywhere, and B(r) = 0 except inside the flux tube, yet still a quantum particle
moving outside will feel the flux! This is utterly different from classical mechanics, where
the particle dynamics is governed by the Lorentz equation, which is local:

mr̈(t) = qE(r) + q
(
ṙ×B(r)

)
(24)
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Now, we imagine a plane wave state of the particle, incident on the flux tube. If we
let the barrier potential radius r0 → 0, then for some finite wavelength incident wave, with
wavelength λ = 2π/k, the scattering cross-section (in 2d) off the potential barrier on its own
(ie., with no enclosed flux) is given from elementary scattering theory by

σk ∼ kr0 ln(kr0) (25)

so that in this limit, the particle does not scatter off the potential barrier. Nevertheless it
still scatters off the flux tube, even though it never sees the flux. The Schrodinger equation
in 2d, for the Hamiltonian (1) with φ(r) = 0, is{

∂2
r +

1

r
∂r +

[
k2 − 1

r2
(i∂θ + ϕ̄)2

]}
Ψ(r, θ) = 0 (26)

and for r 6= 0, the solution can be written in terms of the eigenfunctions of this equation:

Ψ(r, θ) =
∑
lk

clkψkl(r, θ) =
∑
l

cle
ilθ J|l+ϕ̄|(kr), (if r = r0) (27)

with the eigenvalues:

Ĥψlk(r, θ) = εlkψlk(r, θ)

εlk = ~2k2/2m (28)

from which we have

G(r2r1; θ2θ1; t) =
1

2π

∑
l

∫
k dk J|l+ϕ̄|(kr1) J|l+ϕ̄|(kr2) ei[(θ2−θ1)l−εlkt] (29)

However this part is easy. More messy is the determination of the scattering amplitude
fk(θ), defined by the asymmetric form of Ψ(r, θ) according to

Ψ(r, θ) = eikx +
1√
r
fk(θ) e

ikr, quad(when r →∞ ) (30)

This was the problem that Pryce solved for Aharonov, to give the result

fk(θ) ' − eiπ/4√
2πk

sin πϕ̄
ei
θ
2

cos θ
2

(31)

The form of this result is rather complex, and is illustrated in the figure. From the result
in (31) we see that the scattering amplitude is periodic in the flux ϕ̄; indeed, when ϕ̄ = n,
an integer, it has no effect at all.

Notice that (31) diverges for θ → π, and in fact it breaks down for both forward and
backward scattering. The figure gives an idea of how it actually behaves.
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Of course what is so strange about this result is that it shows that the particle dynamics,
in the quantum theory of this problem, is controlled not by E(r) or B(r), but by A(r).
This means that in the quantum theory, it is A(r) (and more generally A(r, t)) that is
fundamental object, and not B(r, t) or E(r, t), which are merely derived from A(r, t).

This is the exact opposite of classical EM theory. There, the fundamental physical
quantities are B(r, t) and E(r, t); and from the Lorentz eqtn. (24), we see that these 2 fields
entirely control the dynamics of electric charge.

(iii) Classical EM vs. QED: What is the reason for this fundamental difference,
between classical EM theory and its quantized version? For many years this was not properly
understood, and yet the reason is to be found in equation (21). We notice that the term in the
exponential appears without an accompanying ~, which is actually buried in the definition
of ϕ̄; let’s rewrite (21) as

G(θ, t; ϕ̄) = A(t)
∞∑

n=−∞

exp
i

~

{
n~ϕ̄+ I

(θ + 2πn)2

2t

}
(32)

where

A(t) =

(
I0

2πi~t

) 1
2

(33)

Now suppose we consider the limit ~ → 0. It is singular; the phase in the exponent
diverges. However we notice that the term in ϕ̄ is independent of ~, and it disappears from
the exponent. This is because there are actually 2 quantum parameters here, ~ and q, and
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we are perfectly entitled to treat them as independent. Thus let’s write (32) as

G(θ, t; ~, q) = A(~t)
∞∑

n=−∞

e
i
2
nqΦ/π e

i
2
I0

(θ+2nπ)2

~t

≡ A(~t)
∞∑

n=−∞

einωc(qΦ) eiψn(~t,θ) (34)

where the prefactor A(~t) and the phase ψn(~t, θ) both diverge as ~t→ 0:

A(~t) =
( I0

2πi~t
) 1

2 −−−→
~t→0

∞

ψn(~t, θ) =
I0

2

(θ + 2nπ)2

~t
−−−→
~t→0

∞ (35)

whereas the topological phase ωc(qΦ) does not:

ωc =
qΦ

2π
, (independent of ~, t). (36)

Thus we see already, from looking at a simple non-relativistic problem in the motion of
a charged particle coupled to a static EM field, that there is a crucial term in the dynamics
that exists in the quantum version of the theory, but not in the classical.

If we think about this a little more, it is not all that obvious why there ought to be
any relationship between the quantum and classical versions of electrodynamics. After all,
classical EM theory makes no reference to Dirac electrons and holes, which exist in QED,
and it is not obvious why the form of the Lagrangian or action for the 2 theories should
look the same. Thus we can, if we like, start by asking - why should there be a quantum
generalization of a classical gauge theory like QED, and what should it look like?

B.4.2 DERIVATION of GAUGE FIELD THEORIES

In this sub-section we will give some of the well-known arguments that are used to derive
the existence and form of gauge theories. A key part of what follows is the comparison
between the quantum and classical versions of these theories. I will focus mainly on the
general form of these theories, with not too much attention paid to examples. Note, as
already emphasized in the previous sub-section, that physics is full of different sorts of gauge
theory - why this is so should become clear in the following.

B.4.2 (a) QUANTUM ELECTRODYNAMICS: a U(1) GAUGE THEORY

QED is the simplest sort of gauge theory - we shall see why this is in the course of the
derivations to be given. It is important in what follows to compare the classical and quantum
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versions of electrodynamics, so we begin by reviewing classical EM theory. In what follows
it will be assumed that everyone is familiar with special relativity and relativistic notation.

(i) Classical Electrodynamics: Classical Electrodynamics is a theory of sources cou-
pled to fields, and it can be phrased entirely in terms of the fields E(x) and B(x), and the
charge 4-current Jµ(x) = (ρ(x),J(x)). However, as is well known, this is not the best way
to formulate it, and it is not ideal for the generalization to QED.

Let’s see how we can set up classical EM theory starting with an experimental fact, viz.,
that there exist fields E(x) and B(x), and that they act upon electric charges according to
the Lorentz force law in (24) above. In 4-vector notation we rewrite the Lorentz equation as

fµ = qF µνuν (37)

where uν is the 4-velocity vector, i.e.,

uν =
dxν

dτ
(38)

where τ is the proper time interval (on a worldline). In what follows will assume the following
conventions; the infinitesimal interval ds is related to the metric by

c2dτ 2 = ds2 = gµνdx
µ dxν −−−−−→

flat space
ηµνdx

µ dxν (39)

where the coordinate 4-vector is xµ = (x0; x1, x2, x3) = (ct; x, y, z), and the flat space
Minkowski metric is taken to be

ηµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (40)

with signature −2. If in some general pseudo-Riemannian spacetime we define a set of basis
vectors eµ (cotravariant) and eν (covariant), then

ds = eµdx
µ = eµdxµ

gµν = eµ · eν , gµν = eµ · eν , gµν = eµ · eµ = δµν (41)

The 4-vectors of main interest to us will be:

4-velocity: u = uνeν , with uν = γu(c,u), where γu =
(
1 − u2

)−1/2
, with ū = u/c, and

with individual components u =
(
dx
dt
, dy
dt
, dz
dt

)
.

Note we then have dτ = dt/γu, and also

u2 = uνuν =

(
ds

dτ

)2

= c2 (42)
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4-acceleration:

a = aνeν , where aν =
d2xν

dτ 2
=

duν

dτ
(43)

so that
uνa

ν = 0 (44)

4-current density:
J(x) = ρ0(x)u(x) = Jν(x)eν(x) (45)

where ρ0(x) is the proper charge density; then

Jν = ρ0γu(c,u) = (ρc, ) (46)

where ρ(x) = γuρ0(x), and j(x) = ρ(x)u(x) is the 3-current density; from eq. (42), we have

J2 = JµJν = ρ2c2 − 2 (47)

Returning now to the Lorentz force equation, we notice that a contraction of (37) with
a 4-vector uµ gives fµuµ = qF µνuµuν = 0, because a 4-force, like a 4-acceleration, must be
perpendicular to its associated velocity (cf. eq. (44)); thus Fµν must be antisymmetric, i.e.,

Fµν = −Fνµ (48)

We have introduced the tensor Fµν(x) as a way of describing the Lorentz force law in
a relativistically invariant way - the presence of the velocity vector ṙ = u in (24) naturally
leads to a formulation in terms of the velocity 4-vector u(x), and then to an equation of the
form in (37). If we now want to recover (24), we write Fµν(x) in the form

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz −By

−Ey/c Bz 0 −Bx

−Ez/c By Bx 0

 (49)

Now, we also wish to find a source equation for the EM field - we may treat this as a
general theoretical requirement, or again base it on experiment (which show that EM fields
act on charges, and are acted on by them as well). Rather than appeal to experiment, we
can instead simply ask what is the natural relativistically invariant form required for electric
charge to generate the field. Since the charge ρ(x) is simply one component of the 4-current
J(x), we look for a linear equation relating F µν(x) to Jµ(x). The obvious way to do this is
to write

∂µF
µν(x) = κJν(x), κ =

{
4π/c (cgs)
µ0 (MKS)

}
(50)

(any other 4-vector Aµ contracted with Fµν(x) would do, but experiment reveals no other
such quantities); the constant κ is given by experiment.
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At first it might seem that eqs. (37) and (50) characterize the theory properly. But
actually the components of Fµν are not independent of each other - there are 6 apparently
independent components in (49), but only 4 independent quantities in (50). One can either
argue that Fµν(x) has to be therefore constructed from a 4-vector, or appeal to experiment
for the relationship between the components of Fµν(x). Both lines of argument lead to the
conclusion that we can write Fµν(x) in the form

Fµν(x) = ∂µAν(x)− ∂νAµ(x) (51)

where

Aµ(x) =

{(
φ(x)/c, A(x)

)
(MKS)(

φ(x), A(x)
)

(cgs)

}
(52)

and φ(x), A(x) are the electric and magnetic potentials. Another way to enforce the restric-
tion to 4 independent components is via the Bianchi identity, written as

∂[λFµν] ≡ ∂λFµν + ∂νFλµ + ∂µFνλ = 0 (53)

which actually follows directly from (51). There are thus 2 different ways we can write the
field equations of classical electromagnetism; we assume:

∂µF
µν(x) = µ0J

ν(x)

and

F µν = (∂µAν − ∂νAµ) OR ∂λFµν + ∂νFλµ + ∂µFνλ = 0 (54)

So far so good. Now observe that we have a rather peculiar theory, for the key observable
variables are E(x) and B(x), and of course J(x), but the underlying field variable for the
EM field, which is not observable, is Aµ(x).

It then follows that if we make any changes of variables, coordinate transformations,
etc., the quantities Fµν(x) and J(x) ought to be invariant, but Aµ(x) does not have to be.
This immediately leads to the possibility of Gauge Transformations. Suppose we make the
transformation

Aµ(x) −→ Ãµ(x) = Aµ(x) + αµ(x) (55)

Then we have
F̃µν = (∂µAν − ∂νAµ) + (∂µαν − ∂ναµ) (56)

and for F̃µν = Fµν , we require αµ = ∂µχ, so:

Ãµ(x) = Aµ + ∂µχ(x) (57)

Thus any one of an infinite set of functions Ãν(x) is just as valid as Aµ(x) for the treatment
of the classical EM fields.

We now wish to write an action functional for the classical EM theory, in preparation for
the transition to QED. There will be 2 parts to this action, the matter part and the field
part.

14



Particle Action in EM theory: For a set of particles of mass mj, at spacetime coordinate
xj, it is well known that the action has the form

Sp = −
∑
j

mjc

∫
dsj = −c2

∑
j

∫
dtj (1− u2

j/c
2)1/2 (58)

Suppose we ignore this term, concentrating only on the electromagnetic part that comes
from the interaction of the current Jµ(x) with the gauge field Aµ(x), which from now on
we take to be the fundamental EM field. The simplest scalar term for a Lagrangian density
combining these two is just JµA

µ, and actually experiment tells us that we should have

Sint = −
∫

d4x Jµ(x)Aµ(x) (59)

At first glance this coupling seem problematic, because it is apparently not invariant
under the gauge transformation of (57). However, one can actually show that it is gauge
invariant, as follows. Suppose we gauge transform (59):

Aµ(x) → Aµ + ∂µψ(x) =⇒ Sint → S̃int

S̃int = −
∫
d4x Jµ(Aµ + ∂µχ) = −

∫
d4x [JµAµ + ∂µ(Jµχ)− (∂µJ

µ)χ] (60)

Now the 2nd term, ∂µ(Jµχ), can be rewritten as a surface integral of Jµψ at infinity,
and we will assume no current sources at infinity. This leaves the 3rd term, and we see the
coupling term (59) will be gauge invariant if the current conservation equation

∂µJ
µ(x) = 0 (61)

is satisfied. But the truth of this is easily demonstrated, starting from the 1st equation of
motion in (54); for if we take the derivative ∂ν of (54), the left side of (54) must vanish
because of the antisymmetric property (48) of the field Fµν(x).

Field action in EM theory: We want to find a scalar quantity which is gauge invariant
for the EM field action. This time we cannot get away with using combinations of Aν(x),
because any combination like AνAν will not be gauge invariant. Thus we must resort to Fµν ,
and the correct form of the field action is in fact

SEM = − 1

4µ0

∫
d4xF µν(x)Fµν(x) (MKS units) (62)

where the prefactor is determined by experiment.
Thus we find that the total EM action is

Scl[J
µ, Aµ] = −

∫
d4x

{
1

4µ0

F µν(x)Fµν(x) + Jµ(x)Aµ(x)

}
(63)

and, by varying this action, we can recover the equations of motion.
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(ii) Quantum Electrodynamics: : Now let us start again, this time with the classical
electrons of EM theory replaced by the electrons described by the Dirac equation for a
spin-1/2 fermionic field having the bare action

S0 =

∫
d4x ψ̄(x) [iγµ∂µ −m]ψ(x) (64)

What we now wish to show is that a quantum action corresponding to the classical action
above can be derived for the Dirac electron coupled to an EM field - but the arguments used
are a little different (at least at first glance). They have the great advantage of being easily
generalizable to a variety of matter fields (although one can quibble rather strongly about
this in the case of quantum gravity).

We begin by noting that one can realize a simple ”gauge transformation” on (64), because
the phase of ψ(x) is arbitrary. Thus we make the global gauge transformation

ψ(x) −→ e−iθψ(x) (65)

Under this transformation, S0 is invariant; the system possesses a global U(1) symmetry.
However, suppose we allow θ to depend on the spacetime coordinates; this move is of course
highly non-trivial, and is suggested by the following considerations:

(i) the original motivation of Weyl, in the 1920’s; since one can envisage, in general
relativity, a charge of ”coordinate measure” as one moves around in space, why not the same
for phase measure (here the name ”gauge”, meaning a measurement scale).

(ii) Quantum Mechanics naturally suggests, particularly in its path integral form, the role
of phase as a fundamental variable in the theory. This idea reappears in the Aharonov-Bohm
effect.

We shall see that the consequences of introducing such a local gauge transformation give
further reason to look at it. So we now consider the transformation:

ψ(x) −→ eiθ(x)ψ(x) (66)

We immediately see that S0 is not invariant under this transformation; in fact we get

S0 →
∫
d4x ψ̄(x)

[
iγµ
(
∂µ − i∂µθ(x)

)
−m

]
ψ(x)

= S0 +

∫
d4x ψ̄(x)γµ∂µθ(x)ψ(x) (67)

However, we can have a gauge-invariant theory if we do the following:

- We replace ∂µ by a ”gauge-covariant” derivative Dµ so that Dµψ(x)→ e−iθ(x)Dµψ(x)
is invariant. This will work if

- we write Dµ = ∂µ+ iqAµ, and at the same time suppose that the field Aµ(x) transforms
according to

Aµ(x) −→ Aµ(x) +
1

q
∂µθ(x) (68)
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thereby cancelling the extra term in (67).
Thus we are led to replace (64) by

S0 =

∫
d4x ψ̄(x) [iγµDµ −m]ψ(x)

=

∫
d4x ψ̄(x)

[
iγµ
(
∂µ + iqAµ(x)

)
−m

]
ψ(x) (69)

and then, recognizing that the field Aµ(x) must have its own individual term in the La-
grangian (it is a now field), which must be gauge invariant, we are finally led to the total
QED action:

SQED =

∫
d4x

{
ψ̄(x) [iγµ∂µ −M ]ψ(x)− Jµ(x)Aµ(x)− 1

4µ0

F µν(x)Fµν(x)

}
(70)

where the Dirac current Jµ(x) is

Jµ(x) = qψ̄(x)γµψ(x) (71)

Thus we have shown that the gauge invariance of the Dirac electron terms in the action,
under a local phase transformation, leads naturally to the existence of a gauge field A2(x) of
the same kind as appears in the original classical action for the EM field! We now see another
reason to take all this seriously; the gauge invariance naturally prevents the existence of a
term ∼ Aν(x), which would give the photon a mass, something excluded by experiment. It
is also interesting to note that the field Fµν(x) acquires a new significance in the quantum
mechanical theory (which in a path integral formulation can be related directly back to the
classical theory, as we shall see). Consider the action of the curvature operator

R̂µν = [Dµ, Dν ] ≡ DµDν −DνDµ (72)

on the wave-function; we immediately find that

R̂µν ψ(x) = iqFµν(x) ψ(x) (73)

so that the different components of the field intensity Fµν(x) (i.e., the ”physical” fields
E(x), B(x)) are just components of the curvature. Thus we can argue that in reality we
have

- Aµ(x): The underlying ”EM field”, or ”EM vacuum”, which is not directly accessible
to us in classical EM theory; it is accessible as a phase variable in QM, modulo gauge
transformation;

- Fµν(x): The ”curvature” - a kind of generalized ”polarization” - of A(x), with
components E(x), B(x), which is directly accessible to us via its effects on charge, in both
classical EM and QED.

We note of course that Fµν(x) is gauge invariant, as we have already seen. Notice two
key features of this U(1) theory:
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(i) The form of the coupling to the gauge field (indeed, the existence of the gauge field,
in the argument) arises solely from the transformation of the matter field under local phase
transformation; one ends up with a covariant or ”minimal” coupling. The requirement of
gauge invariance then uniquely determines the coupling (as well as the masslessness of the
gauge field).

(ii) The photon does not couple to itself. There is no reason coming from gauge invariance
why this ”photon self-coupling” does not happen (it could, e.g., come from higher powers of
Fµν(x) in the action); nevertheless there are no such terms in the bare action.

There is also a 3rd key feature which we will come to below, concerning the connection
between gauge transformations and conservation laws (Noether’s Theorem).

B.4.2 (b) NON-ABELIAN GAUGE FIELDS - YANG-MILLS THEORY

In their pioneering paper published in 1954, Yang and Mills vastly extended the ideas of
gauge fields beyond the U(1) discussion given above. This paper, inspired by ideas from GR
as well as by questions arising in particle physics, was almost entirely ignored for a decade
- it was well ahead of its time. There was nothing in classical physics at that time which
suggested such a quantum theory, apart from GR - although now we have very nice examples
from condensed matter physics (e.g., superfluid 3He, where the quantum order parameter
obeys a set of classical equations of motion which look like a non-Abelian gauge theory on
a background dynamics curved spacetime). The main reasons that the Yang-Mills theory
received so little attention until the early-mid 1960’s were

(i) Almost nobody was interested in or familiar with classical GR; and quantum gravity
hardly existed even as an idea.

(ii) The Yang-Mills (YM) theory predicted massless particles. Adding a mass term broke
the SU(N) gauge invariance. No mechanism at that time was known, at least in particle
physics, that would break this invariance in a physically satisfactory way.

(iii) Nobody knew how to calculate with such theories.

As we will see, objections (i) and (ii) were slowly overcome; the key to solving (ii) was
the Anderson-Higgs mechanism, implemented for YM theories by Salam and Weinberg. The
key to (iii) was the use of path integral methods, without which even QED remained hard
to understand. The main initiative came from ’t Hooft, and from ’t Hooft and Veltman.

In what follows we will begin by going through the important special case of SU(2) gauge
symmetry, which is a nice pedagogical example. I will then sketch how this is generalized to
higher non-Abelian groups, and discuss the physical significance of all this.

(i) SU(2) Gauge Theory: Recall that the simple SU(2) group can be represented by
the Pauli matrices τ̂αβj , with

τ̂iτ̂j = δij + iεijkτ̂k

[τ̂i, τ̂j] = 2iεijkτ̂k (81)
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and we may define the unitary operator Û(Ω) = Û(n̂Ω), where n̂ is a unit vector on the
Bloch sphere, as

Û(Ω) = e−
i
2
Ω·τ = e−

i
2

Ωjτ
αβ
j ≡ lim

N→∞

(
1− i

2N
Ω · τ

)N
(82)

where the last form gives us the infinitesimal operator. Note that Û(Ω) = Ûαβ(Ω) is a
matrix operator in ”spin space”, and the unit vector n̂ tells us the direction around which
Ω is effecting a rotation.

We may now go through much the same manoeuvres as we did for the Abelian gauge
field. We introduce in this case a 2-component spinor Dirac field, ψα(x), and note that the
Lagrangian

L0 = ψ̄α(x)
[
iγµ∂µδ

α
β −mδαβ

]
ψβ(x)

is invariant under a global SU(2) rotation. However, let us now apply the local operator,
where Ω→ Ω(x); then

Û
(
Ω(x)

)
ψ(x) = Uαβ

(
Ω(x)

)
ψβ(x)

= e−
i
2
Ω(x)·τ αβ

ψβ(x) = ψ̃α(x) (83)

and so we find that L0 is not invariant, for the same reason as before, i.e., we get an extra
gradient term:

S0 −→ S0 +

∫
d4x ψ̄α(x)

[
U−1
αγ

(
Ω(x)

)
∂µU

γβ
(
Ω(x)

)]
ψβ(x) (84)

We therefore introduce the gauge covariant derivative, with a charge g0:

Dµ =
(
∂µ + i

g0

2
τ ·Aµ(x)

)
Dαβ
µ =

(
∂µδ

αβ + i
g0

2
ταβj · Ajµ(x)

)
(85)

where we use a vector notation ταβ = (ταβj , ταβx , ταβy ) ≡ ταβj → τ , so as to suppress

the clutter of indices, with the boldface indicating a vector in real spacetime. Since ψ̄α(x)

transforms to ˜̄ψα = u−1
αβψ̄β, we clearly want a transformation such that

Dµψ −→ U
(
Ω(x)

)
Dµψ (86)

and, going through the algebra, analogous to that for U(1) gauge fields, we find that

1

2
τ ·Aµ −→ U(Ω)

1

2
τ ·AµU

−1(Ω) + ig−1
0

(
∂µU(Ω)

)
U−1(Ω) (87)

or, for an infinitesimal transformation δΩ(x) (cf. eq. (82)), we get

1

2
τ ·Aµ −→

1

2
τ ·Aµ +

1

2
τ · (δΩ×Aµ) +

1

2g0

τ · ∂µδΩ

1

2
τiA

i
µ −→

1

2
τiA

i
µ +

1

2
εijkτ

iδΩjAkµ +
1

2g0

τi∂µδΩ
i (88)
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where we write out all the components in the 2nd form. Thus we can now write everything
in terms of a new non-Abelian gauge field, given by (85), with the transformation property

Aµ(x) → Aµ(x) + δAµ(x)

δAµ(x) =
(
δΩ(x)×Aµ(x)

)
+

1

g0

∂µδΩ(x) (89)

and we can immediately generalize this from the infinitesimal transformation to the general
transformation

Aµ(x) −→ Aµ(x) +
1

g0

∂µδΩ(x) +
(
Ω(x)×Aµ(x)

)
Aiµ(x) −→ Aiµ(x) +

1

g0

∂µδΩ
i(x) +

(
εijkΩ

j(x)Akµ(x)
)

(90)

which we should compare with the Abelian transformation in (68). We can also relate this
to a ”curvature tensor”, or field intensity tensor; as with (72) above, we have an operator

Rαβ
µν = Dαγ

µ Dγβ
ν −Dαγ

ν Dγβ
µ (91)

and applying this to ψα(x), we find that

Rαβ
µν ψβ(x) =

ig0

2
(ταβ · Fµν) ψβ(x) (92)

where we define

Fµν =
(
∂µAν − ∂νAµ

)
+ g(Aµ ×Aν)

F i
µν =

(
∂µA

i
ν − ∂νAiµ

)
+ gεijkA

j
µA

k
ν (93)

Unlike the Abelian Fµν(x), this tensor is not gauge-invariant, as we see by making the
transformation; we have

τ · Fµν(x) −→ U
(
Ω(x)

)
(τ · Fµν(x)) U−1

(
Ω(x)

)
Fµν(x) −→ Fµν(x) + Ω(x)× Fµν(x) (94)

However, the analogue of the Abelian field action term in (63) and (70) is gauge-invariant;
i.e., the term

Tr {(τ · Fµν) (τ · Fµν)} =
1

2
F i
µνF

µν
i (95)

is gauge-invariant. Thus we are led to the form of our spinor generalization of the Abelian
gauge theory, taking the form of an action in which a vector gauge field Aµ(x) is coupled to
a spinor fermion field ψ(x), with the action

S
[
ψ̄, ψ; Aµ

]
=

∫
d4x ψ(x) [iγµDµ −m]ψ(x) − 1

4
F i
µν(x)F µν

i (x) (96)
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with Dµ given by (85). Now we would like to write this in a way analogous to (63), using a
current operator. We can do this if we define

Jµ(x) ≡ Jµi (x) =
g

2
ψ̄(x)γµ τ ψ(x)

=
g

2
ψ̄α(x)γµταβi ψβ(x) (97)

A little later we will see how such a choice can be justified (and in the same way justify
the choice (71) for Abelian QED). In any case, with this choice we can write the final form
for the action:

S =

∫
d4x

{
ψ̄α(x) [iγµ∂µ −m]ψα(x) − Jµ(x) ·Aµ(x) − 1

4
Fµν(x)Fµν(x)

}
(98)

with the quantities defined as we have already seen.

This concludes the discussion of a simple U(1) non-Abelian gauge theory, which has the
advantage of being easily understandable in temrs of spinors. Let us now move to a more
general discussion.

(ii) General Non-Abelian Gauge Theories: We can reformulate all of this for a
general non-Abelian gauge group. Thus, one can imagine some simple Lie group G with
generators {ga} satisfying the algebra

[ga, gb] = ifabcg
c (99)

and we will represent this Lie algebra with matrices T which operate on a n-dimensional
fermion field Ψ(x) = Ψa(x). The matrices T then have the commutation relation

[Ta, Tb] = ifabcT
c (100)

and the general local gauge transformation will act on Ψ(x) according to

Û
(
Λ(x)

)
Ψ(x) = e−ig0T·Λ(x) (101)

where we can think of Λ(x) as a ”hyperangle” in the n-dimensional space. We introduce a
generalized gauge field Aµ with components Aµa(x), which transform according to

Aµa −→ Aµa + ∂µΛa + g0fabcΛ
bAµc (102)

and we define the gauge covariant derivative

Dµ =
(
∂µ + ig0T ·Aµ

)
(103)

Then the action of the commutator Rµν = [Dµ, Dν ] on the fermion field is given by

Rµν = [Dµ, Dν ] = ig0T · Fµν (104)
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with
Fµν(x) =

(
∂µAν − ∂νAµ

)
+ ig0 [Aµ, Aν ] (105)

which transforms according to

Fµν(x) −→ Û(Λ)Fµν(x)Û−1(Λ) (106)

Finally, we write the total action for this theory as

SYM =

∫
d4x

{
Ψ̄(x) [iγµDµ −m] Ψ(x) − 1

4
Fµν(x) · Fµν(x)

}
=

∫
d4x

{
Ψ̄(x) [iγµ∂µ −m] Ψ(x) − Jµ(x) ·Aµ(x) − 1

4
Fµν(x) · Fµν(x)

}
(107)

of which the SU(2) theory is obviously a special case.

B.4.2 (c) PHYSICAL PROPERTIES of GAUGE FIELDS

There are many interesting things that one can say about gauge fields, particularly about
non-Abelian gauge fields. In the following I will confine the remarks to some fairly basic
points.

(i) Equations of Motion and Current Conservation: Up until now we have just
looked at the action and the quantities in it. But an obvious physical question is - how do
the fields affect each other’s motion?

To answer this we find the equations of motion of the 2 fields, by functionally differenti-
ating the action. We then have, as usual, that

δSYM =

∫
d4x

[
∂µ

∂L
∂(∂µAν)

− ∂L
∂Aν

]
δAµ

+

[
∂µ

∂L
∂(∂µΨ̄)

− ∂L
∂Ψ̄

]
δΨ̄ +

[
∂µ

∂L
∂(∂µΨ)

− ∂L
∂Ψ

]
δΨ (108)

giving us equations of motion for Aν , Ψ̄, Ψ. The simplest of these equations is for the
fermion field Ψ(x); we have(

iγµDµ −m
)
Ψ(x) =

[(
iγµ∂µ −m

)
+ ig0Ψ̄(x)γµ T ·Aν(x)

]
Ψ(x) = 0 (109)

so that the fermion field is acted upon by a ”source” which combines the anti-field Ψ̄(x) and
the gauge field term T ·Aν(x). A similar equation is obeyed by the anti-field Ψ̄(x).

The gauge field equation of motion is taken from the 1st variation in (108), and it gives

DµF
µν(x) = g0Ψ̄(x) γµT Ψ(x) = Jµ(x) (110)

which is just the generalization of the usual sourced equation of motion for the EM field.
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It is very interesting and useful to look more closely at the connection between currents
like Jν(x) in (110) and the symmetries that exist in the field theory of interest. Let us recall
where an expression like (108) comes from; our theory has a Lagrangian L

(
Xp, ∂µXp

)
, where

Xp =
(
φ(x), ψ̄α(x), ψ(x), Aν(x), . . .

)
is the set of all fields that L depends on, collected into

one ”superfield” Xp. We then have

δS =

∫
dDx

[
∂L
δXp

δXp +
∂L

δ(∂µXp)
δ(∂µXp)

]
=

∫
dDx

[
∂L
δXp

+
∂L

δ(∂µXp)
∂µ

]
δXp (111)

Now from this we derive a form like (108) by throwing away boundary terms, arguing
that at the boundary of our spacetime they vanish - this is done using integration by parts,
to show that

∂µ
( δL
δ(∂µXp)

)
− δL
δXp

= 0 (112)

once we set δS = 0. However, substituting this into (111), we immediately find that δS in
(111) can be written as a total derivative, i.e.,

δS =

∫
dDx ∂µ

[
δL

δ(∂µXp)
δXp

]
=

∫
dDx δL(Xp, ∂µXp) (113)

where we now identify the quantity in bracelets as a ”current”. Before continuing with
argument, let’s just consider what form the current Jµ(x) might take. This clearly depends
on what field Xp we are dealing with. In what follows we will assume that all transformations
of the Lagrangian we are interested in can be effected by unitary operators acting on the
field Xp, i.e., that we can write

X̃p = eiG
a
pqωaXq (114)

for the transformed field, where Ga
pq is the generator of the transformation and ωa is the

”angle” by which it is effected. Then, e.g., we have

Ga
pqωa −→ g0T

a
αβ ·Λa (general non-Abelian transformation)

Ga
pqωa −→

g

2
τ aαβ ·Ωa (SU(2) transformation)

Ga
pqωa −→ qθ (U(1) transformation) (115)

where in the case of a global transformation, ωa is independent of x, whereas for a local
transformation, ωa → ωa(x).

From (114) we have

δXp = iδωa(x)Ga
pqX

q =

(
∂Xp

∂ωa

)
δωa(x) (117)
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and so now we can write δL in (113) as

δL = ∂µ

[
∂L

∂(∂µXp)

∂Xp

∂ωa

]
δωa (118)

Now, the key point. Suppose we make a transformation of the fields, which will be as-
sumed infinitesimal, parametrized by the infinitesimal δωa, and we find that L is unchanged.
It then immediately follows that

∂µJ
µ
a(x) = 0

Jµa(x) =

[
∂L

∂(∂µXp)

∂Xp

∂ωa

]
(119)

This is usually called ”Noether’s theorem”, and evaluation of it for any of the fields
we have looked at so far immediately gives us a conservation law for the currents we have
defined. As an example of (119), consider the bare Lagrangian

L0 = Ψ̄α(x) [iγµ∂µ −m] Ψα(x) (120)

The infinitesimal field transformation is

Ψα(x) =
[
−ig0T

a
αβΨ

β(x)
]
δΛa (121)

so that the current is

Jµa(x) =
(
iΨ̄α(x)γµ

)(
− g0T

a
αβΨ

β(x)
)

= g0Ψ
α(x)γµTαβ

a Ψβ(x) (1)

as previously derived in (110). From (119) we then see that for the Lagrangian in (120),
Jµa(x) is conserved.

One can say a lot more about such conserved currents, but the basic message here is clear
- symmetries lead to conservation laws, just as in classical physics and in ordinary QM.

(ii) Physical Interpretation of Fµν(x): It has already been stated that Fµν(x) can be
thought of as a kind of curvature, and here we amplify on this statement.

Consider the case where the transformation of the field we have been talking about now
consists in looking at the change of the field as we move from one point to another. Thus
we are interested in the transformation

ψ(x2) = Û(x2, x1)ψ(x1) (123)

and more generally in the correlator

g2(x2, x1) = 〈0 | T̂ {ψ(x2)ψ(x1)} | 0〉 (124)
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Now let’s consider the effect of adding a gauge field into the unitary transformation
Û(x2, x1) ψ(x1). In path integral language, we can write an expression of the form

Û(x2, x1) ψ(x1) = e
i
~
∫ x2
x1

dx (L0+LA)
= G0

21[x] e
i
~
∫ x2
x1

dx LA (125)

where the ”amplitude” G0
21[x] is the result of making the transformation in the absence of

the gauge field, along a special path x.
Let’s now focus on the extra contribution here, which we call

PA(x2, x1 | x) = e
i
~
∫
dx LA(ψ̄,ψ;Aµ) (126)

for a general gauge field; thus, e.g., for the non-Abelian Yang-Mills theory of (107), we have

PA(x2, x1 | x) = e
ig0
∫ x2
x1

dxµ T·Aµ(x)
(127)

Now the interesting question here is - what happens if we take the system through a
circuit, and bring it back to the same place? This question leads us to a specific example of
a ”Berry phase” argument, which is more usually discussed for a simple wave-function, as in
QM.

To extract the curvature it is sufficient to look at an infinitesimal circuit, which we
assume to be oriented arbitrarily in spacetime. Let us imagine following this circuit along
the counterclockwise path 1→ 2→ 3→ 4; i.e., we wish to calculate the contribution

P(x, x′ | 4 3 2 1) = eig0
∮
dxµT·Aµ(x) = P(4, 3)P(3, 2)P(2, 1)P(1, 4) (128)
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Now there are 2 obvious ways to do this. One is the simple and quick method of using
Stokes’s theorem, i.e., we write

eig0
∮
dxµT·Aµ(x) = e

ig0
∮
dxµ dxν

{(
∂µAν(x)−∂νAµ(x)

)
+g0[Aµ(x),Aν(x)]

}
(129)

where Aµ(x) = T ·Aµ(x). This result is obtained by noting the identity

e(Â+B̂)x = eÂx eB̂x e−[Â, B̂]x2/2 +O(x3) (130)

for the non-commuting operators Aµ(x) and Aν(x), and then using two of the four integra-
tions in the commutator term to remove the derivatives from the integral [∂µAν , ∂νAµ, ] in
the exponent.

If this manoeuvre seems too much of a trick (and it looks much better if we phrase it in
terms of differential forms ), then we can do the path integral long-hand. We have

P(3, 2)P(2, 1) = eig0Aµ(x)+dxν) dxν eig0Aµ(x) dxµ

= exp

{
ig0

[
Aµdxµ +

(
Aνdxν + ∂µAνdxµ dxν

)]
− g2

0

2
[Aµ, Aν ] dxµ dxν

}
and so we get

P(x, x′ | 4 3 2 1) = exp
{
ig0

[(
∂µAν − ∂νAµ

)
− ig0 [Aµ, Aν ]

]
dxµ dxν

}
(131)

From this result, which agrees with (129), we see that the net effect of moving around
this path is to change the amplitude. Now we have already seen this effect in our discussion
of the Aharonov-Bohm effect, for which the curvature at a point is just the magnetic field
B(x) (assuming the field Aµ(x) is static). What we see in (131) is just the generalization of
this to the non-Abelian case (cf. eq. (105)).

Why do we call this a curvature? Actually this is because of the analogy with GR,
where we measure the curvature of spacetime by parallel transporting some 4-vector around
a loop. Here we are actually transporting a field around the space of field configurations, in
the Hilbert space of these configurations, by moving along a circuit in spacetime. Thus we
can think of this as a curvature of the gauge field itself.

The effect of the commutator, and of the non-commutating property of the fields, has
a profound effect on the field dynamics. Let us go back to the result we have for the total
action, eq. (107), then has terms of 3rd and 4th-order in the gauge field:

−1

4
Fa
µν · Fµν

a = −1

2
Tr
{(

T · Fµν

)(
T · Fµν

)}
= −g0f

bc
a ∂µAaνA

µ
bA

ν
c −

g2
0

4
fabcfadeAµbA

ν
cAdµAeν (132)

where the fabc are, as before, the elements characterizing the Lie group algebra (so for simple
angular momentum-style operators, we would have fabc = εabc).
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Thus we immediately expect to see terms corresponding to diagram like those in (a) and
(b) above, which correspond to the 1st and 2nd self-interaction terms in (132) above. This
is in addition to the free gauge line shown in (c).

From this we see a really crucial difference between U(1) gauge fields like those in QED,
and the non-Abelian Yang-Mills theory. If we refer back to the discussion just after equation
(80), a key feature of ordinary electrodynamics was highlighted, i.e., that photons do not
interact with themselves. However, Yang-Mills gauge fields have their own ”self-charge”,
and act as a source for themselves (in addition to having matter fields as their source). The
Yang-Mills gauge field is thus fundamentally non-linear. This has profound effects on the
dynamics of YM fields; many of these effects have yet to be explored, and we still do not
have anything like a full understanding of them.

And of course all this takes no account of the coupling of YM fields to matter itself, which
makes it all the more complicated! To properly deal with all of this would take us deep into
the standard model.

Finally, notice that we have not yet quantized this theory! To do this we have to adapt
path integrals to gauge theory, which we now do.

B.4.3: PATH INTEGRALS for GAUGE FIELDS

It is perfectly possible to deal with QED using a conventional canonical approach, and
the results of doing this are strewn across dozens of textbooks and thousands of papers.
What is less often emphasized are certain difficulties in such an approach, which proved
insurmountable in the case of non-Abelian gauge theories (at least at until the end of the
1960’s). For this reason the success of the path integral approach proved decisive for the
subsequent development of particle physics.

The technical key which opened the door was the development by Fadeev and Popov in
1966-67 of their method of integrating over gauge-equivalent fields, following the discovery
of ”ghost” contributions by Feynman in the early 1960’s. In the following I will explain the
simple picture behind the Fadeev-Popov idea, and then give its formal elaboration.
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B.4.3 (a) FUNCTIONALLY INTEGRATING over REDUNDANT VARI-
ABLES

We wish first of all to understand exactly what is the problem that arises when we have
to deal with gauge fields, in the paht integral formalism and elsewhere. To do this we will
begin with a simpler analogous problem, and see how its solution can be generalized to deal
with gauge fields.

(i) Redundant Variables and Jacobians: Let’s start by considering the following
mathematical problem. Suppose we are given some functional I[f ] of a function f(Q) of

a variable Q =
(
{xi}; {qj}

)
. To focus things, imagine the functional I tells us the total

energy on the earth coming from the sun at some time t (we suppress the dependence on
t, and f(Q) is the intensity of sunlight above some point on the earth’s surface, having
angular coordinates Ω = (θ, φ)). Then xi = Ω = (θ, φ), and the {qj} are a set of atmospheric
variables like pressure P , temperature T , humidity, etc.

Now as physicists we understand clearly that the intensity depends only on the angle Ω
(measured with respect to the sun’s direction); all other variables are irrelevant (and we also
know that I[f ] = C

∫
dΩf(Ω), where C is a constant). Suppose, however, we did not know

this. Then we might have some trouble finding the relevant variables amongst all the others
- a common problem in, e.g., medical trials. The question then is - if we have the functional
I[f ] written in some arbitrary way as a functional of f(Ω, {qj}), how can we extract the
meaningful information, ie., how can we get rid of the redundant variables {qj}?

This problem suggests a rather simpler mathematical question, which I present by way
of an example. Suppose we are given the simple integral

I =

∫
d2R f(R) (133)

where R = (x, y, z) is a vector in 3-d space; BUT we have the restriction that we are only
allowed to integrate on the surface shown in the figure, defined by z = g(r), where g(r) is
just the ”height” of the surface, as a function of the 2d planar variable r = (x, y, ). Now we
might think we could then write

I =

∫
d3R f(R)δ

(
z − g(r

)
(??) (134)

Now this would work if the surface was a flat horizontal one, ie., if

f(R) = f(r) ∀z
∂nf(R)

∂zn
= 0 (135)

so that f(R) is independent of z. Obviously in this case the problem is trivial - the variable
z is quite irrelevant to our considerations.
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Suppose however that it turns out that we don’t know the explicit form of the equation
for the surface in the form Z = g(z), but we only know that the surface obeys an implicit
equation of form

G(R) = 0 (136)

so that the surface might have some arbitrary shape, ie., not just be a plane parallel to the
xy plane (in the above example, we have G(R) = z − g(r)). Then we would write 1

I =

∫
d3R f(R)

∣∣∣∂G(R)

∂z

∣∣∣δ(G(R)
)

(137)

to take care of the change of variables - we have introduced a Jacobian which takes care of
the variable rate at which we pass through the surface, at different points in the space, when
we vary z. All of this is a low-dimensional example of a more general problem; we have a
function

I =

∫
dx f(x) x = (x1, . . . , xn)

=

∫
dQ f(Q)δ(q) q = (q1, . . . , qm) (138)

where Q = (x, q) = (x1, . . . , xn; q1, . . . , qm), and f(Q) = f(x), ∀q; this is the analogue of
the above problem where the surface is flat and horizontal. Then if we define a surface in
Q-space upon which f(Q) varies, but where it is independent of the other coordinates in
Q-space that are orthogonal to the surface variables, we can make the same arguments as
above. We define the surface as

G(Q) = 0 (139)

and then we have

I =

∫
dQ f(Q) det

∣∣∣∂G(Q)

∂q

∣∣∣δ(G(Q)
)

(140)

as the solution to our problem.

1Note that for some function f(x), with zeros at points {xoj}, with j = 1, 2, . . . , we have δ
(
f(x)

)
=

|f ′(x)|−1δ
(
x− xoj)

)
. For I in (137) we have, in the case where G(R) = z − g(r) (cf. (124), that δ

(
G(R)

)
=∣∣∣∂G

∂z

∣∣∣−1δ(z − g(r)). The determinant in (140) is the multi-variable version of this.
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(ii) Redundancy for Gauge Fields: What we now wish to do is to apply this ob-
servation to the problem of functional integration over gauge fields, where the key problem
is that instead of a function f(Q) with redundant variables in it, we deal with a functional
Z
[
ψ̄, ψ; Aµ

]
of a gauge field Aµ(x) which also has redundant variables in it - the redundancy

being generated from some given Aµ(x) by making a gauge transformation. The generating
functional Z should be invariant under any gauge transformation, since no physical quantity
should depend on which gauge we choose; and indeed we know it is invariant, because the
action is invariant.

What this means is that the obvious form for the generating functional,

Z
[
ψ̄, ψ; Aµ

]
=

∫
Dψ̄DψDAµ e

i
~S[ψ̄, ψ; Aµ] (??) (141)

cannot be right, because it contains a ”hidden infinity”, coming from the integration over
all gauge-transformed configuration of Aµ.

One might argue here that all one needs to do is to fix a gauge, and then calculate from
there. In the old canonical formulation, this is what was done with QED, but it led to
severe technical problems, which we will note in passing below. But in the path integral
formulation, all that one has to do is to extract the Jacobian determinant in (14) (or rather,
its generalization to functionals).

What happens if we do just apply (141) naively? We can do this most simply with QED,
and so we are interested in the following integral:

I[Jµ] =

∫
DAµ e

i
~{S0[Aµ]+

∫
d4x Jµ(x)Aµ(x)} (142)

where S0[Aµ] is given by (62), which we rewrite as

S0[Aµ] = − 1

4µ0

∫
d4x Fµν(x)Fµν(x)

=
1

2µ0

∫
d4x Aµ(x)

[
ηµν∂2 − ∂µ∂ν

]
Aµ(x) (143)

which we can also write in k-space as

S0[Aµ] = − 1

2µ0

∑
q

Aµ(q)
[
q2ηµν + qµqν

]
Aν(−q) (144)

and you will notice the similarity of this result to that for the phonon system; we can in the
same way divide this free field term into transverse and longitudinal parts, i.e., write

Aµ(q) = A‖ν(q)q̂µq̂ν + A⊥ν (q) [δµν − q̂µq̂ν ] (145)

and we see that the operator Q̂µν
0 (q) = q2ηµν − q̂µq̂ν , or equivalently the operator Qµν

0 (x) =
ηµν∂2−∂µ∂ν , are both entirely transverse (which is what we would expect for photons, which
are indeed transverse excitations).
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The next move is then clearly supposed to be to do the functional integral in (142),
following the usual line of development:∫

DAµ e
i
~
∫
dDx

[
1

2µ0

(
Aµ,Qµνo ,Aν

)
+
(
JµAµ

)]
∼ 1

|Qµν
o |

e−
iµo
2~
∫
dDx (JQ−1

o J) (146)

where the inverse operator is:

Q−1
0 =

(
ηµν∂2 − ∂µ∂ν

)−1
(147)

However this operator inverse is formally infinite; writing[
ηµν∂2 − ∂µ∂ν

] (
Q0(x, x′)

)
µβ

= δµβδ(x− x
′) (148)

and multiplying to the left by ∂µ, we get

0×Q0 = ∂βδ(x− x′) (149)

which is a contradiction unless Q̂0 is infinite. This infinity is a reflection of the gauge
invariance, because Aµ(q) contains longitudinal (as well as transverse) degrees of freedom,
which are untouched by Q̂0, i.e., they have zero eigenvalue when acted upon by Q̂0 (and
hence infinite eigenvalue when operated on by Q̂−1

0 ). Any gauge transformation of the form
(57), adding a term ∂µψ(x) to Aµ, will thus also have zero eigenvalue when acted upon Q̂0,
as we see easily:

Qµν
0 ∂µψ(x) =

(
ηµν∂2 − ∂µ∂ν

)
∂µψ(x) = 0 (150)

So how do we deal with this? The naive answer is to fix the gauge before doing the
calculation, but this has the disadvantage that we immediately lose Lorentz invariance in
the calculations. In the early days of QFT this was a big problem, actually first solved by
Tomonaga. Other methods introduced a photon mass into the calculation - this removed the
problem of zero eigenvalues, but destroyed gauge invariance (the mass was set to zero at the
end of the calculation). However all such techniques were extremely messy to implement,
and quite impossibly complicated for non-Abelian gauge theories.

B.4.3 (b) FADDEEV-POPOV TECHNIQUE

Let’s first describe the solution of Fadeev and Popov in geometric terms, and then go on
to see how it works in detail.

Imagine the space of all possible configurations of some gauge field Aµ(x). This is of
course a very large space, which we show here in the figure in the form of a 3-d caricature.
Now suppose we are in some specific gauge, and we look at all such configurations in this
gauge. We show all such configurations in this gauge on a hyper-sheet, depicted as a simple
2-d sheet in the figure. We then write all of these configurations, in this gauge, as

Aµ(x) −→ Āµ(x) (fixed gauge) (151)
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and then consider the set of all possible gauge transformation on Āµ(x) that are required
to reverse this many-one mapping, ie., to produce the full set of possible configurations; we
write these as

{Aµa(x)} = {Aµa(x) + αµa(x)} ≡ {Aµa(x) +
(
∂µΛa(x) + g0fabcΛ

b(x)Aµc (x)
)
} (152)

where it is understood that we deal here with infinite sets - the set of all gauge configurations
{Aµ(x) ≡ {Aµa(x)} is produced by starting with the set of all configurations possible in some
fixed gauge {Āµ(x)}, and then adding all possible gauge transformations {αµ(x)} ≡ {αµa(x)},
for arbitrary differentiable functions αµ(x). More precisely, we define the group G of all
possible equivalence classes of a given Ãµ(x), called in mathematics the ”orbit” of the gauge
group; the full set of functions Aµ(x) is then produced by the set of all orbits of all possible
configurations Āµ(x) in a fixed gauge. To show that this geometrical picture is meaningful
is a job for mathematicians, which we will not enter into here.

Consider now the functional integral in (142) again - we will now write

I[Jµ] =

∫
DAµ e

i
~{S0[Aµ]+

∫
d4x Jµ(x)Aµ(x)}

=

∫
Dαµ(x)

∫
DĀµ e

i
~{S0[Ãµ+αµ]+

∫
d4x Jµ(x)[Ãµ+αµ]}

=

∫
Dαµ

∫
DĀµ(x) e

i
~{S0[Aµ]+

∫
d4x Jµ(x)Aµ(x)} (153)

and we see that the problem in (153) is that integrand appearing in the functional integral,
i.e., the function exp

{
i/~
(
S0[Aµ] +

∫
d4x Jµ(x)Aµ(x)

)}
, is invariant under changes in gauge,

so that the functional integration
∫
Dαµ(x) simply produces an infinite multiplication of the

answer - what we would like to do is to get rid of this redundant multiplication factor.
To do so, let’s recall the development in eqs. (138)-(140), and do the same now for

gauge functionals, instead of just ordinary functions. Notice that we cannot just stick a
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factor like δ
(
χ(x)

)
into the functional integral, for two reasons. First, we want to keep

the theory gauge invariant, for many different reasons (most of which have not yet become
apparent). Second, in the functional integral (142) and (153), we don’t actually yet know
how to properly ”measure” the ”volume”, in the hyperspace of functionals, of the domain
defined by a specific gauge choice. To see this we simply recall the determinant appearing in
the finite-dimensional integral in (137), which acts as a Jacobian for the change of variable
- it is not yet clear how to generalize this to cover for the much larger space of functions we
are now dealing with.

Thus it is not enough to just stick a factor δ
(
G
(
Āµ(x)

))
into the functional integral

(141), and integrate over the full Aµ(x). What we want is something like

Z
[
ψ̄, ψ, Aµ

]
=

∫
Dαµ(x)

∫
DĀµ ∆FP δ

(
G
(
Āµ(x)

)) ∫
Dψ̄Dψ e

i
~S[ψ̄, ψ,Aµ] (154a)

where ∆FP is the relevant determinant, now called the ”Fadeev-Popov determinant”. Our
job is to find an expression for it, which is valid for any coneeivable form for the gauge
transformation.

Formally this is easy. In exact analogy with (140), we have

∆FP = det
∣∣∣δG(Aµ(x)

)
δαµ(x′)

∣∣∣ ≡ det
∣∣∣δG(Aaµ(x)

)
δαµb (x′)

∣∣∣ = ∆ab
FP (x, x′)

for G
(
Aµ(x)

)
= 0 (gauge constraint) (155a)

so that

∫
Dαµ∆FP [α] = 1 (155b)

However these formal expressions are not terribly illuminating until we try to use them
- this we will see in the next sub-section, for both QED and for non-Abelian gauge theories.

In preparation for this, let’s first rewrite (155a) for a general non-Abelian gauge theory.
If we assume that the non-Abelian gauge transformation can always be characterized by
an ”angle” in some space of gauge transformations (this angle being θ(x) for U(1) trans-
formations and the hyperangle Λ(x) = Λa(x) for YM theories), then we can rewrite the
Fadeev-Popov factor in (154) as∫

Dαµ(x) ∆FP δG
(
Aµ(x)

)
→

∫
DΛ(x) ∆FP (x, x′) δG

(
Aµ(x′)

)
(156)

where now

∆FP (x, x′) ≡ ∆ab
FP (x, x′) = det

∣∣∣δG(Aaµ(x)
)

δΛb(x′)

∣∣∣ ≡ det |Mab(x, x′)| (157)

This is a much more transparent formula since the functional integral is over hyperangles
Λa(x) in some finite-dimensional space, something we know how to do. Note that the Fadeev-
Popov determinant has a physical meaning that is evident from (157). If we make an
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infinitesimal change in the gauge by effecting a change δΛ(x′) in the gauge angle, then
∆FP (x, x′) measures the ”response” of the gauge-fixing function G

(
Aµ(x)

)
to this change.

In other words, if we write

δG
(
Aµa(x)

)
=

∫
d4x′ Mab(x, x

′) δΛb(x′) (158)

then Mab(x, x′) measures the response of the a-th component of the gauge constraint function
G
(
Aµa(x)

)
to the change δΛb(x

′) in the gauge angle.

B.4.4: GAUGE FIELDS in HIGH-ENERGY PHYSICS

We will not go into too much detail here. The case of QED is relatively easy to under-
stand, as we will see. Non-Abelian gauge theories are more messy because the number of
degrees of freedom is large. It would take us too far afield to discuss the application of the
results to either QED or to the electroweak theory (and the latter requires, in any case, an
appeal to a spontaneous symmetry-breaking, i.e., to the Anderson-Higgs mechanism).

B.4.4 (a) QUANTUM ELECTRODYNAMICS

This is of course the simplest theory. We have parametrized gauge transformations in
this theory by the shifty Aµ(x) −→ Aµ(x) + ∂µχ(x), but it is now time to formulate this a
little more generally. We assume the gauge constraint in the form

G
(
Aµ
(
x, θ(x)

))
= 0


G
(
Aµ(x)

)
= ∂µA

µ(x) (Lorentz)
G
(
Aµ(x)

)
= ∇ ·A(x) (Coulomb)

G
(
Aµ(x)

)
= Az(x) (Axial)

 (159)

when on the RHS of (159) we give 3 common examples of fixed gauge choices in QED. In
what follows we will use a slight variation on the Lorentz gauge, by adding an extra function
χ(x); this can simply be viewed as part of the gauge transformation, and its usefulness will
become apparent later. We then write

G(Aµ) = ∂µAµ(x)− χ(x) ≡
(
∂µĀµ(x) + ∂2θ(x)

)
− χ(x) (160)
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where Āµ(x) is some fixed gauge satisfying G(Aµ) = 0. Now eqtn (155b) implies that∫
Dθ(x) δ

(
G(Aµ)

)
= ∆−1

FP ; thus we have 2∫
Dθ(x) δ

(
G(Aµ)

)
=
(

det |∂2|
)−1

(161)

so that the FP determinant is

∆FP (x, x′) = det |(∂µ∂µ)x,x′| ≡ det |∂2| (162)

which is a constant ∆PF ; recall that the determinant det |∂2| ≡ det |∂2
xx′ |, where ∂xx′ ≡

〈x|∂2|x′〉 = ∂xδ(x − x′), should be interpreted as a matrix, which is diagonal in x-space
(compare notes on path integrals in section A). Thus we get

I[Aµ] =

∫
DAµ(x) e

i
~S[Aµ]

= ∆FP

∫
DAµ(x) δ

(
∂µAµ − χ(x)

)
e
i
~S[A] (163)

with the constant outside the integration. However we still have to deal with the δ-functional
δ(∂µA − χ), and this is where the ’t Hooft trick comes in handy. Suppose we functionally
integrate now over χ(x), but now inserting some functions Ht(x) in the integral, i.e., we
multiply I by the factor

∫
Dχ(x) Ht(x), (where we if we choose Ht = 1, then we get rid of

the χ-function as though it had never been there at all). We then have

I[Aµ] =
1

N

∫
DAµ Ht(∂

µAµ) e
i
~S[A] (164)

where N , the normalizing factor, is just a constant:

N =

∫
Dχ Ht(χ)

∆FP

(165)

The nice thing about this trick is that we can now make Ht(χ) the exponential of some-
thing - this way everything is now in the exponential, and we can read off the Feynman rules.
The choice made by ’t Hooft was

Ht(χ) = exp
−i
2α

∫
d4x

1

µ0~
χ2(x) (166)

where α is just a number; we then finally get (ignoring the factor 1/N ):

ZQED[Jµ] =

∫
Dψ̄Dψ

∫
DAµ e

i
~

{
S0[A]− 1

2α

∫
d4x 1

µ0
(∂µAµ)2+

∫
d4x Jµ(x)Aµ(x)

}
(167)

2Recall the footnote to eqtn. (137). We are just using the fundamental generalization of the usual formula
that

∫
dx δ(ax− b) = 1/a to

∫
Dθ(x) δ

(
∂2θ(x)− f(x)

)
= 1/ det(∂2).
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with S0[Aµ] given by (143) or (144). We may now do the usual functional integration that
led to (146) and (147), but now we can write

ZQED[Jµ] =

∫
Dψ̄Dψ

∫
DAµ e−

i
~
∫
d4x

[
1

2µ0
Aµ(x)D0

µν(x,x′)Aν(x′)
]
−
∫
d4x Jµ(x)Aµ(x)

(168)

where
D0
µν(x, x

′) =
(
ηµν∂

2 + (α−1 − 1)∂µ∂ν
)−1

(169)

and this operator does not have the pathology of Q0(x, x′) in (147); it has an equivalent
representation in momentum space as

D0
µν(q) = − 1

q2 + iε
[ηµν + (α− 1)q̂µq̂ν ] (170)

where as usual, q̂µ = qµ/|q|. The parameter α now acts as a ”regularizer”, getting rid of
the ”zero mode” problem we had before. Different values of α give different gauges that had
been used in QED long before Fadeev and Popov; for example

α = 1 Feynman gauge
α = 0 Landau gauge

We may now read off the Feynman rules for QED (compare the rules already derived for
Dirac fermions in section B.3, eqs. (44)-(48)). We have, for the Lagrangian

L = ψ̄α
(
iγµDµ −m

)
ψα + JµA

µ − 1

2αµ0

(∂µA
µ)2 − 1

2µ0

FµνF
µν (171)

the following rules:

1. The fermion propagator is Gαβ
0 (kj) = i~SαβF (kj), for a fermion line carrying momentum

kj, as shown in the figure (172);

2.The photon propagator is given by the factor, as shown in the figure (173),

i~D0
µν(q) =

−i~
q2 + iε

[ηµν + (α− 1)q̂µq̂ν ]

3. Each interaction vertex contributes the factor, as shown in the figure (174)

− i
~
g = − i

~
eγµαβ δ

(∑
i

ki +
∑
j

qj
)
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where the γ-matrix now contains spin indices α, β acting between ψ̄α and ψβ, and e is the
charge of the particle.

Then, as usual, we sum over all spinor indices, integrate over all moments ki and qj, and
multiply by a symmetry factor; and the momentum integrations appear in the form

(−1)L
∫

dk1

(2π)D
· · ·
∫

dkn
(2π)D

∫
dq1

(2π)D
· · ·
∫

dqm
(2π)D

(175)

where L is the number of fermion loops.
Actually, the rules for QED are almost identical in form to those for the electron-phonon

problem, covered in section B.3; and the topology of the diagrams is identical to that for the
coupled field problem of section B.3.

B.4.4 (b) YANG-MILLS SU(N) GAUGE THEORY

Let us go back to our key formula in (157), for the FP determinant. To make things
clear, we will simply go through the same manoeuvres as we did for the U(1) gauge field, we
will pick the same generalized Lorentz gauge,

G
(
Aµa(x)

)
= ∂µA

µ
a − χa(x)

= ∂µĀ
µ
a + ∂µ

(
∂µΛa + g0fabcΛ

bĀµc
)
− χa(x) (176)

Following through the steps as for the QED calculation, we then find that

∆ab
FP (x, x′) = det |δab ∂z + g0f

abc∂µA
µ
c | δ(x− x′) (177)

We may also carry out the integration using the ’t Hooft trick, introducing the obvious
generalization of (166) as

Ht(χa) = exp
−i
2α

∫
d4x

(
1

~
χa(x)χa(x)

)
(178)
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and so we can write the partition function or generating functional as

ZYM [Jaµ ] =

∫
DAµ(x) ∆FP e

i
~

(
S0
YM [A]+

∫
d4x[Jµ(x)Aµ(x)− 1

2α
(∂µAµ)2]

)

=

∫
DAµa(x) ∆ab

FP (x) e
i
~

(
S0
YM [Aµb (x)]+

∫
d4x[Jbµ(x)Aµb (x)− 1

2α
(∂µAµ)2]

)
(179)

with S0
YM [Aµ] given by:

S0
YM [Aµ] = −1

~

∫
d4x Fµν(x)Fµν(x) (180)

However there is now a big difference. In the case of QED, the Faddeev-Popov determi-
nant ∆FP in (162) was just a constant, independent of the field Aµ(x). This is no longer
the case - the determinant in (177) is clearly dependent on Aµ(x), and so we cannot take
it outside the functional integral in (179), as we did for QED in (163). This makes the
non-Abelian case much more difficult.

At this point the founders of modern QFT introduced a trick that had been invented by
Feynman, during his earlier research into quantum gravity. He wrote the determinant ∆ab

FP

as a functional integration over a set of fake fermion fields - this takes us back to the result
we found in section B.2 for integration over Fermion fields, that they give a determinant in
the numerator (cf. eqs. (25) and (28) in section B.2). Thus we write

∆ab
FP (x, x′) = det |Mab(x, x′)| =

∫
Dc̄(x)

∫
Dc(x) eiSGH [c̄,c]

SGH [c̄, c] =

∫
d4x

∫
d4x′ c̄a(x)Mab(x, x′)cb(x) (181)

where the fermion fields c(x) ≡ ca(x) and c̄(x) obey all the Grassmann rules discussed before.
The fields were called ”ghost fields” by Feynman, and they created much confusion at the
time (Feynman introduced them to prevent the theory from losing unitarity - it was only
later that their role as a determinant was understood).

Thus we can finally write that

ZYM [Jaµ ] =

∫
Dc̄Dc

∫
DAµ e

i
~

(
S0
YM [Aµ]+SGH [c̄,c]+

∫
d4x [Jµ(x)Aµ(x)− 1

2α
(∂µAµ)2]

)
(182)

The Feynman rules for this functional are extracted by writing the action in terms of a
non-interacting ”free field” part

S0[c̄, c; Aµ] =

∫
d4x

[
c̄(x)∂2c(x)− 1

4
Fµν(x)Fµν(x)− 1

2α
(∂µA

µ)2

]
(183)
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and an interacting part

Sint[c̄, c; Aµ] = −
∫
d4x

{
ig0(c̄fc ∂µA

µ) +
1

2
g0Fµνf AµAν − 1

4
g2

0 (f f)(AµA
µ)2

}
= −

∫
d4x

{
ig0(c̄af

abccb∂µA
µ
c ) +

g0

2
F a
µνf

bc
a A

µ
bA

ν
c −

g2
0

4
fabcf

de
a A

b
µA

c
µA

µ
dA

ν
e

}
(184)

and this allows us to read off the Feynman rules for the Yang-Mills gauge field (which, I
emphasize, is still not coupled to the real world fermions that one might expect to exist in
a real theory like the electroweak theory). We then have

1. A vector boson propagator given by the YM generalization of (173), as shown in the
diagram (185)

i~D0
µν(q) =

−i~
q2 + iε

δab [ηµν + (α− 1)q̂µq̂ν ]

2. A ghost propagator given by the diagram (186)

−i∆ab(k) = −iδab 1

k2 + iε

where there is no ~ because of the definition (181); we notice that the ghost propagator is
massless, as is obvious from (184), and is a scalar field as well.

3. Finally, from the interaction in (184) we get a whole variety of vertices, of the following
form:

(a) 3-boson vertex, given by the 2nd term in (184), as

− i
~
λ3 =

i

~
g0f

abc [ηµν(q1 − q2)λ + ηνλ(q2 − q3)µ + ηλµ(q3 − q1)ν ] δ(q1 + q2 + q3)

in which 3 vector bosons Aµ(q) interact at a point in spacetime, each scattering off their
mutual ”curvature”;

(b) A 4-boson vertex, given by the 3rd term in (184), as

i
~λ4 = − i

~g
2
0[fabe f

cd
e (ηµληνρ − ηµρηνλ)

+ face f
bd
e (ηµνηλρ − ηµρηλν)

+ fade f
cb
e (ηµληνρ − ηµνηλρ)]δ(q1 + q2 + q3 + q4)
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with 4 bosons coupled at a point;
(c) A boson-ghost fermion interaction, coming from the 1st term in (184), given by

i

~
g3 = g0f

abcqµ

which is produced by the absorption of a gauge boson by the ghost fermion.

Finally, we integrate over momenta as before - however, there are no external ghost
fermion lines, and we still have a loop factor (−1)L for L ghost fermion loops.

This concludes this introduction to gauge fields in QFT. One of the most interesting
topics that is usefully examined in this formalism, outside of particle physics, is the variety
of non-relativistic fermionic and bosonic superfluid in Nature, as well as spin fluids. And of
course, if we go to spin-2 gauge fields, we can also discuss quantum gravity.
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