
B3. Perturbation Expansions

& Feynman Diagrams

We now come to a very important part of the apparatus of QFT (as well as of classical field
theory, statistical mechanics, and indeed ordinary mechanics), viz., the use of perturbation
expansions and their associated Feynman diagram expansions to get approximate results for
quantities.

This is a big topic, and we cannot possibly cover all of it. So I will be picking certain
important things and focussing on them, and only briefly discussing others. As before, the
main ideas will be developed using φ4 theory to begin with, since this is a relatively simple
bosonic field theory with interactions. We then move on to the Feynman rules for Dirac
fermions, non-relativistic phonons, and for non-relativistic fermions - this should give a fair
picture of how this works.

It is important to see how these rules translate into concrete calculations. We therefore
take a much closer look at one special case, that of phonons - we look at these for both
solids and liquids. This example is of great importance in condensed matter physics, and it
also brings out the role of symmetries, conservation laws, and other general features which
appear in many field theories.

Finally, we look at a system of coupled fields. Again, this illustrates a number of crucial
general features of QFT - given its importance we first treat a toy model of 2 coupled
relativistic scalar fields, and then go on to discuss the very important non-relativistic example
of the coupled electron-phonon system. This is done first for metallic electrons, where this
interaction leads to superconductivity, and then for insulators, where it leads to the formation
of polarons.

There are many important general structural features of QFT which can be discerned
already in perturbation theory; I will delineate some of these, taking care to note that
perturbative results can also be very misleading. We will return to this topic again later on,
in discussing non-perturbative phenomena (see Chapters 5 and 6).

B.3.1: DIAGRAMMATIC EXPANSIONS for φ4 THEORY

In the last chapter we discussed the basic quantities of interest in a QFT, using φ4

theory as our main example. These quantities included the 3 generating functionals Z[J ],

W [J ], and Γ[φ],and their associated correlation functions Gn(x1, . . . , xn), G(c)
n (x1, . . . , xn),

and Γn(x1, . . . , xn).
In this section we will discuss how to evaluate these quantities using perturbative ex-

pansions in powers of the coupling constant g. As we will see later on, this is by no means
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the only parameter in which one can expand, which can be then be used to generate whole
classes of diagrams. Later on (in Chapter 6) we will meet ”gradient expansions” (when
at least some part of the field is varying slowly in x-space), ”loop” expansions (also called
fluctuation expansions, or asymptotic expansions in ~), and 1/N expansions (where N is the
number of components of the field); and so on.

Our two main tools, at least initially, for the generation of perturbative expansions will
be the expressions eqs. (79) and (83) of Chapter B.1; for the φ4 theory these were given in
eqs. (80) and (84) of Chapter B.1. Let’s begin with the expansion generated by functional
derivatives in J(x), which we repeat here:

Z0[J ] =
e−

i
~
∫
dDxV

(
−i~ δ

δJ(x)

)
e−

i
2~

∫
dDx

∫
dDx′J(x)∆F (x−x′)J(x′)[

e−
i
~
∫
dDxV

(
−i~ δ

δJ(x)

)
e−

i
2~

∫
dDx

∫
dDx′J(x)∆F (x−x′)J(x′)

]
|J=0

(1)

where as usual we choose the interaction

V [φ] =

∫
dDx

g

4!
φ4(x) (2)

We will also deal with the related functions

W [J ] = −i~Z[J ]

Γ[φ] = W [J ]−
∫
dDx J(x)φ(x) (3)

and the task we are setting ourselves here is to determine the perturbative expansion in g
of these functions, along with their associated functional derivatives (i.e., their associated
correlators). So let’s begin.

B.3.1(a) : EXPANSION of Z[J ] and Gn(x1, . . . , xn) for φ4 THEORY

Let’s do this explicitly, so that there is no confusion about what is involved. From eq.
(1) it is clear that we want to calculate the quantity

I4[J ] =
(
− i~ δ

δJ(x)

)4
e−

i
2~

∫
dDx1

∫
dDx2 J(x)∆F (x1−x2)J(x2) (4)

in order to find the first correction (to order g) in Z[J ] from the non-interacting expression
Z0[J ]. This is straightforward; for example, we see that

− i~ δ

δJ(x)

[
e−

i
2~

∫
dDx1

∫
dDx2J(x)∆F (x1−x2)J(x2)

]
= −~

∫
dDx1 J(x1)e−

i
2~

∫
dDx1

∫
dDx2J(x)∆F (x1−x2)J(x2) (5)

2



and continuing in the fashion, we get

I4[J ] →

{[∫
dDx′ J(x′)∆F (x− x′)

]4

+ 6i~∆F (0)

[∫
dDx′∆F (x− x′)J(x′)

]2

− 3~2∆2
F (0)

}
× e−

i
2~

∫
dDx1

∫
dDx2J(x)∆F (x1−x2)J(x2) (6)

and the J(x)→ 0 limit of this is

lim
J(x)→0

I4[J ] = −3~2∆2
F (0) (7)

We then find that, to order g,

Z[J ] =

{
1− ig

~4!

[( ∫
J∆F

)4
+ 6i~∆F (0)

( ∫
J∆F

)2 − 3~2∆2
F (0)

]}
e
−i
2~

∫∫
J∆F J

1 + ig
~4!

(
3~2∆2

F (0)
) +O(g2) (8)

=

{
1− ig

~4!

[( ∫
J∆F

)4
+ 6i~∆F (0)

( ∫
J∆F

)2
]}

e
−i
2~

∫∫
J∆F J +O(g2) (9)

in an obvious abbreviated notation. Clearly this is quite elaborate - but it has a simple
interpretation in terms of diagrams. Suppose we use the same diagrammatic notation as we
used in 1st section, in eq. B.1 (66) (section B.1, page 12) so that we can represent the key
terms in eq. (8) above as in the figure showing eqtn. (10)

Let us note 2 important features that appear already in eqs. (8)-(10); where we note
that the diagrams in (10) are those that appear in the numerator of eq. (8).

(i) There are 3 different kinds of diagram appearing already in (10). The first graph, at
left, is an example of a diagram which contributes to scattering in dynamics of the φ4 field.
It is a ”4-point” function, i.e., it has 4 external legs; it also gives an irreducible contribution
(i.e., are that cannot be separated into 2 parts by cutting any internal lines) to the correlator
G4(x1, . . . , x4). You should look back at eq. B.1 (22) in this connection, and at eq. B.1 (18).
The 2nd, middle diagram in (10) is actually a contribution to G2(x1, x2), and it contains
within it the self-energy part i~g∆F (0)/4; a contribution to −iΣ(k) (see B.1 (47) ). Thus we

see that the 2nd diagram is also a contribution to the connected Green function G(c)
2 (x1, x2)
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in eq. B.1 (48). The third diagram, right in (10), is a new kind of ”vacuum diagram”, or
”vacuum fluctuation” diagram, which contributes to the ground-state energy of the system
- we shall say more on these later.

(ii) However we see from eq. (9) that the vacuum diagram does not contribute to Z[J ].
This result is only established here up to order ∼ O(g2), but it is quite generally true, to all
orders in g; it is of course assumed in our original discussion of Z[J ] (see eqs. B.1 (22) and
B.1 (18)), and follows directly from the original definition in eqs. B.1 (20) and B.1 (17).

The next obvious question that arises here is - what form the correlators Gn(x1, . . . , xn)
take in a perturbative expansion? To do this up to ∼ O(g2), it suffices to take the result we
have just derived for Z[J ] in eq. (9). This is straightforward - we find the following results:

A. The 2-point correlator

G2(x1, x2) = −~2 δ2Z[J ]

δJ(x1)δJ(x2)
|J=0 (11)

(compare eq. B.1 (19)). If we substitute eq. (9) above into this, we get the eqtn. in fig. (12)
which we may rewrite, using the usual the relation in eq. B.1 (69) between G0(x1 − x2) and
∆F (x1 − x2), as

G2(x1 − x2) = G0(x1 − x2) − g

2
G0(0)

∫
d4x′G0(x1 − x′)G0(x′ − x2) +O(g2) (13)

with Fourier transfor

G2(k) = G0(k)
[
1− ig

2
∆− F (0)G0(k)

]−1

+O(g2) (14)

a result which we interpret below.
B. The 4-point correlator

G4(x1, . . . , x4) = ~4 δ4Z[J ]

δJ(x1) · · · δJ(x4)
|J=0 (15)

(see eq. B.1 (19)).
The detailed evaluation of this is a tedious but straightforward exercise. The term ∼

O(g◦), i.e., independent of g, was already given in eqs. B.1 (70) and B.1 (71). The final
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result, after doing the functional differentiations, can be written graphically as the eqtn. in
fig. (16) and we see that the 2 diagrams for G4 that are ∼ O(g) comprise a set of disconnected
graphs in which one of the 2 propagators is renormalized, plus a set of connected scattering
graphs.

One can derive all the Gn(x1, . . . , xn) for the φ4 theory in a systematic way once we
establish a set of rules for the graphs - we do this below.

B.3.1(b) : EXPANSION of W [J ] and G(c)
n (x1, . . . , xn) for φ4 THEORY:

We can tie up all the loose ends here by looking at our other two functionals. Let’s
consider first W [J ] = −i~Z[J ], which, we recall, is supposed to be made up entirely of
connected graphs.

We could try working out W [J ] directly, but here we are interested in the structure of
the correlators, and this we can find out directly from what we have already calculated for
Z[J ].

Back in section B.1 we found that there were 2 ways we could compute the correlators
G(c)
n (x1, . . . , xn), i.e., we have

G(c)
n (x1, . . . , xn) = (−i~)n−1 δnW [J ]

δJ(x1) · · · δJ(xn)
|J=0

= (−i~)n
1

Z[J ]

δnZ[J ]

δJ(x1) · · · δJ(xn)
|J=0 (1)

and we showed that these were the same, despite appearances. Now it is actually quite
illuminating to see how this works out in a diagrammatic expansion, in powers of the coupling
g; so let’s evaluate the 2-point and 4-point functions G(c)

2 (x1, x2) and G(c)
n (x1, . . . , x4) using

both methods.
The 2-point correlator G(c)

2 (x1, x2) is given in terms of W [J ] by

G(c)
2 (x1, x2) = − i~ δ2W [J ]

δJ(x1)δJ(x2)
|J=0 (18)

→ −i~
{
−i~

[
1

Z[J ]

δ2Z[J ]

δJ(x1)δJ(x2)
− 1

Z2[J ]

δZ
δJ(x1)

δZ
δJ(x2)

]
|J=0

}
(19)

where the result (19) comes from using W = −i~Z. Now when J = 0, δZ/δJ = 0, and so
we get from (19) that

G(c)
2 (x1, x2) = (−i~)2 1

Z[J ]

δ2Z[J ]

δJ(x1)δJ(x2)
|J=0 (20)
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which is exactly what we expect from (17). Moreover, since:

Z[J ] |J=0 = 1 (21)

by definition, we find that

G(c)
2 (x1, x2) = G2(x1, x2) = (−i~)2 δ2Z[J ]

δJ(x1)δJ(x2)
|J=0 (22)

In other words, we have found that the connected correlator G(c)
2 (x1, x2) is equal to the full

correlator G2(x1, x2); this has been shown here explicitly without any expansion in powers
of g, to all orders in g. If we expand out to linear order in g, we just get eq. (12) again,

but now for G(c)
2 (x1, x2). This is of course what we would expect - it is impossible to have

disconnected graphs for a 2 point function.
The same is not true for 4-point functions. It is then quite interesting to see how things

work out in perturbation theory. Let’s again begin with W [J ]. Then from (17) we have

G(c)
4 (x1, . . . , x4) = (−i~)3 δ4W [J ]

δJ(x1) · · · δJ(x4)
|J=0 (23)

and if we work through the details of this, we easily find that

G(c)
4 (x1, . . . , x4) = G4(x1, . . . , x4)−G2(x1, x2)G2(x3, x4)

−G2(x1, x3)G2(x2, x4)−G2(x1, x4)G2(x2, x3) (24)

or in the diagrams shown in (25), in which the products of G2’s are given over all possible
pairings of x1, x2, x3, x4.

Now at first glance there seems to be something very wrong with these last 2 equations.
On the left-hand side we have a connected Green function - i.e., it cannot be disconnected
into separate parts - whereas on the right-hand side we have a whole bunch of disconnected
terms: both the products of G

′
2s, and disconnected terms in G4.

The magic here is that we find, to any order in perturbation theory, that all the dis-
connected terms on the right-hand side actually cancel. One can actually verify this up to
∼ O(g2), for the φ4 theory we are considering here, by substituting the expressions (12) and
(16) for G2(x1, x2) and G4(x1, . . . , x4) respectively, into eq. (24) above. The evaluation is
a little tedious but entirely straightforward - we eventually get the eqtns. shown in (26),
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where in the last expression we sum over all 24 permutations of the external positions xα,
xβ, xγ, and xδ.

B.3.1(c) : EXPANSION of Γ[φ] for φ4 THEORY

Finally, let’s see what the proper vertices look like in perturbation theory in g. Now
we could just go through the same routines as above, but we shall do something a little
different here, in anticipation of later developments (to do with the semiclassical and loop
expressions). What we are going to do is to see, in perturbation theory, a very interesting
relationship between the action S[φ] and the proper vertex functional Γ[φ].

Consider what happens when we approximate the sum over paths in the expressions we
have given up to now, by the classical result, i.e., by the single path of minimum action.
This means that if we start with the functional Z[J ], we end up with a function Z̄cl[J ];

Z[J ] =

∫
Dφ e

i
~ [S[φ]+

∫
dDx J(x)φ(x)] (2)

→ Z̄cl[J ] = exp

{
i

~

[
S̄cl[φ̄] +

∫
dDx φ̄(x)J(x)

]}
(3)

where the ”classical” solution φ̄(x) minimizes the action functional:

δS[φ]

δφ(x)
|φ=φ̄ +J(x) = 0 (28)

and S̄cl ≡ S[φ̄].
For the φ4 action this just gives

(∂2 +m2)φ̄(x) +
g

3!
φ̄3(x) = J(x) (29)

as the classical equation of motion for the φ(x) field in φ4 theory, in the presence of an
external source J(x).

Now we can ask what happens to W [J ] → W̄ [J ] and Γ[φ̄] in this classical limit. Let’s
rewrite eq. (27) as

W̄cl[J ] = −i~ ln Z̄cl[J ] = S̄cl[φ̄] +

∫
dDx J(x)φ̄(x) (30)
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But this just shows that in this classical limit, the classical action is the same as the
generating functional for the proper vertices, i.e.,

Γ̄cl[φ̄] = S̄cl[φ̄] (classical limit) (31)

(cf. definition of Γ[φ], eq. B.1 (41)). This result is our first one of the remarkable structure
contained in semiclassical expressions in field theory, to which we will return.

Let’s see how this works out for the φ4 theory, and solve perturbatively for φ̄(x) in eq.
(29). Since ∆−1

F (x) = −(∂2 +m2) (ignoring regularizing δ function for now), we have

φ̄(x) = −
∫
dDx′∆F (x− x′)

[
J(x′)− g

3!
φ̄3(x′)

]
(32)

where V ′(φ) = δV [φ]/δφ(x) = g
3!
φ3(x) in φ4 theory. We can now simply find the solution

iteratively, by iterating in the parameter λ = g
3!

. We then get

φ̄(0)(x) = −
∫
dDx′∆F (x− x′)J(x′) (33)

φ̄(n+1)(x) = −
∫
dDx′∆F (x− x′)

[
J(x′)− λφ̄3

(n+1)(x)
]

(34)

so that, eg.,

φ̄(1)(x) = φ̄(0)(x) + λ

∫
dDx′∆F (x− x′)φ̄3

(0)(x
′)

= φ̄(0)(x) + λ

∫
dDx′∆F (x− x′)

[∫
dDx′′∆F (x′ − x′′)J(x′′)

]3

(35)

If we depict this perturbative expression graphically, we get, for terms up to order λ3, the
terms are like diagrams (36) from which we clearly see the ”tree” structure of these graphs
for φ̄(x). From eq. (31) we also have

Γ̄cl[φ̄] = S̄cl[φ̄] =

∫
dDx φ̄(x) (37)

so that in the semiclassical limit, both S̄cl[φ̄] and Γ̄cl[φ̄] also have this tree structure, with no
”loops” (i.e., lines that close back or region other lines). Thus the classical approximation
(also referred to commonly as the ”tree approximation”, is easy to implement graphically
(there are actually some subtleties here, which we will come back to in Chapters 6 and 7).

Actually, as we saw from section B.1, all graphs for Γ[φ] have this tree structure, although
they do contain ”inner loops”. We shall look at this more later on, both in the context
of diagrammatic expansions, and when we discuss more general results in the context of
loop expansions about the classical theory, in the chapter on non-perturbative methods (see
Chapter 6).
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B.3.2: FEYNMAN RULES - SOME EXAMPLES

In very detailed texts on QFT, in either particle physics or condensed matter physics,
the Feynman rules for a given field theory are derived. This can be a lengthy process, and
we will not do it here. Another approach, popularized by Hooft and Veltman in 1973 (and
of course initially developed by Feynman) is to simply define the perturbative theory by
the Feynman rules, and then work out the details from there. With a little intuition and
experience it is easy to do this correctly.

In what follows I will do this for a few simple field theories, of central importance in
particle physics and condensed matter physics. One thing I will not do here, but is done
later. So here we will simply look at self-interesting fields, by way a gentle introduction. We
will also ignore any order parameter condensation.

B.3.2(a) : FEYNMAN RULES for φ4 THEORY

From the calculations of graphs that we have already done, it is pretty easy to guess the
Feynman rules for this theory; and it is also easy to see how they come about. The key is
to start from the defining formulas

Z[J ] = N e
i
~
∫
dDxV [−i~ δ

δJ(x) ]Z0[J ]

Z0[J ] = e
−i
2~

∫
dDx

∫
dDx′J(x)∆F (x−x′)J(x′) (38)

which we repeat here for good measure - cf. eqs. (79) and (80) in section B.1. The nor-
malization factor N is just Z[J = 0], and we will not need it here. We can also write this
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as

Z[J ] = NZ0

[
−i~ δ

δφ(x)

]
e
−i
~

∫
dDx [V (φ)−φ(x)J(x)] |φ=0

→ N e
−i
2~

∫
dDx

∫
dDx′ δ

δφ(x)
∆F (x−x′) δ

δφ(x′) e
−i
~

∫
dDx [ g4!φ4(x)−J(x)φ(x)] |φ=0 (39)

involving functional derivatives φ(x); cf. eqs. (83) and (84) of section B.1. Either (38) or
(39) can be used to generate diagrammatic expressions. Let us first give the Feynman rules
for this theory, and then see how they emerge from either (38) or (39). The rules can be
expressed as follows:

For some quantity having n external legs (eg., the correlator Gn(x1, . . . , xn), or the vertex
part Γn(x1, . . . , xn)), we draw all possible graphs having n external legs, and an arbitrary

number of internal interaction vertices. Graphs for g
(c)
n (x1, . . . , xn) and Γn(x1, . . . , xn) are

connected, whereas diagrams for Gn(x1, . . . , xn) do not have to be.
Then, to the graphs, we assign values according to:

1. Each line has the value i~∆F (kj) (and momentum kj) in the diagram (40), where kj
is the momentum of the line.

2. Each interaction vertex in the φ4 theory, with interaction term − g
4!
φ4(x) in the La-

grangian, contributes the factor (−i/~)g δ(
∑

j kj) in the diagram (41), where we sum over
the momenta kj which flow into or out of the vertex (the δ function expresses momentum
conservation).

3. All independent momenta in the diagram, not fixed by momentum conservation, are
integrated over, i.e., we multiply by the factor

L∏
α=1

∑
kα

=

∫
dD k1

(2π)D

∫
dD k2

(2π)D
· · ·
∫

dD kL
(2π)D

(42)

The number L of independent internal momenta (the number of ”Loops”) is given in terms
of the number I of internal lines, and the number V of internal vertices, is given by

L = I + 1− V (43)

4. Each diagram is multiplied by a SYMMETRY FACTOR, or combinatorial factor. This
is defined by the total number of different ways of generating the same diagram.
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The definition and calculation of symmetry factors doesn’t pose any difficulties of prin-
ciple, but is a little finicky - we discuss the procedure in an appendix.

We have already worked out quite a few diagrams for the φ4 theory in the proceeding
pages, so there is no need to give any examples here. Note that although the expressions
given above can be derived easily from the Feynman rules given above, we still have not
actually evaluated them, i.e., we have not done the 4-momentum integrals.

B.3.2(b) : FEYNMAN RULES for DIRAC FERMIONS

We have already discussed the case of non-interacting Dirac fermions - but what if they
are interacting with each other? There are actually a number of different ways this can
happen, but in this course we will concern ourselves with 2 kinds of self-interaction, i.e.,

(i) A short-range relativistic point interaction;
(ii) A non-relativistic electron-electron interaction arising from the Coulomb interaction

in condensed matter systems.
We deal here with the 1st case; the second case is discussed immediately below. This

first case will be defined by the local interaction

Lint = −g0

∫
d4x (ψ̄(x)ψ(x))2 (44)

Then the rules are given as follows:

1. Each fermion line has the propagator G0(kj) = i~SF (kj) associated with it in the
diagram (45), where kj is the 4-momentum of the line.

2. Each interaction vertex, coming from the interaction (44), contributes the factor
(−i/~)g δ(

∑
j kj) in the diagram (46), where we sum over the momenta flowing into or

out of the vertex.
3. All independent momenta in the diagram are integrated over; this is like the bosonic

φ4 theory except that there is an extra factor (−1)L, where l is the number of fermion loops;
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thus we have to integrate according to

(−1)L
L∏
α=1

∑
kα

= (−1)L
∫

dD k1

(2π)D
· · ·
∫

dD kL
(2π)D

(47)

4. Again, each diagram, is multiplied by a symmetry factor.

The fermion loop factor (−1)L comes from the antisymmetry under the exchange of
fermion fields. For some loop, we will be presented with a sequence of fields of form

T̂
{
· · ·ψ(x1)ψ̄(x2)ψ(x2) · · · ψ̄(xL)ψ(xL)ψ̄(x1) · · ·

}
(48)

We can describe (48) by the diagram, where the dotted lines in the graph at the top, mediate
lines not involved in the loop. But to order this sequence, we must move the last field ψ̄(x1)
to the beginning of the sequence - and this will give a sign of −1, no matter what is L or
what are the arguments of the vertices (you might, in order to make sure of this argument,
change everything to the momentum representation, and/or work this out for an example -
eg., a simple graph with one or two loops).

B.3.2(c) : FEYNMAN RULES for NON−RELATIVISTIC FERMIONS

This last case is of great importance in condensed matter physics (and in astrophysics).
This is because of the prevalence in Nature of finite density systems of mobile fermions (in
metals, superconductors, white dwarfs, neutron stars, etc.).

We already saw in the last section what the action for a set of mobile fermions has -
recall that for a finite density of fermions, the Fermi surface SF (k) is defined by the chemical
potential, so that for a non-interacting Fermi gas, we have the result that

k ∈ SF (k) : iff εok = µ (84)

Later we will see that in the presence of interactions, the Fermi surface SF (k) can move
in k-space, as a function of the interactions.

We have already seen the form of the generating functional as well (Chapter B2, eqs.
(60)-(62)); we have

Z[η̄, η] =

∫
Dψ̄kσ

∫
Dψkσ e

i
~ [S[ψ̄,ψ]+

∫
d4x (η̄kσψkσ+ψ̄kσηkσ)] (85)
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where we are assuming here an isotropic, translationally invariant system, so that k is a
good quantum number - examples include bulk 3He, bulk nuclear matter, or a cold Fermi
gas, or a star. In a conducting solid, neither k nor σ are good quantum numbers (because of
the lattice, and because of spin-orbit coupling); and in the nuclear, which is finite, we must
classify states according to the symmetry group of the nucleus, as in the atom.

For the homogeneous system, in the presence of interactions, we have an action

S = S0[ψ̄, ψ] + Sint[ψ̄, ψ] (86)

from B.2, eqs. (60) and (64), we have

S0[ψ̄, ψ] =

∫
dε

2π

∑
kσ

ψ̄kσ(ε)
[
~ε− ε0k + µ

]
ψkσ(ε)

Sint[ψ̄, ψ] = −
∫

dε

2π

∫
dω

2π

∑
k,q

∑
σ,σ′

V (q, ω)ψ̄kσ(ε)ψkσ(ε)ψ̄k+q,σ′ (ε+ ω)ψk+q,σ′ (ε+ ω) (87)

where we have generalized the interaction V (q) in B.2 eq. (60), to include a frequency
dependence as well. Then the Feynman rules for this system are:

1. Each fermion line, at T = 0, is assigned the value

Gσσ
′

0 (k, ε) = i~δσσ′
[

θ(|k| − kF )

~ε− (ε0k − µ) + iδ
+

θ(kF − |k|)
~ε− (ε0k − µ)− iδ

]
(88)

where we separate the ”particle” and ”hole” excitations (existing above and below the Fermi
surface respectively). The proof that G takes this form will be given later, when we deal with
temperature Green functions. Note that if spin is not conserved (e.g., if we have spin-orbit
coupling) then the δσσ′ is suppressed. We can think of (85) as the sum of particle and hole
terms, with the propagator direction depending on which we deal with - note the opposite
signs of the δ-functions.

2. The interaction vertex for the action in (87) is given by

− i
~
V (q, ω) δ

(∑
j

kj
)
δ
(∑

j

εj
)
δ
(∑

j

σj
)

where we enforce the conservation of momentum, energy, and spin at each vertex, as shown
in the diagram (89).
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3. All independent momenta, frequencies, and spin, projections are summed over; and a
factor (−1)L appears, where L is the number of independent loops in the diagram.

4. A symmetry factor is associated with each diagram.

This concludes our introductionary discussion of Feynman rules - anyone wanting much
more detail and a deeper understanding should go to books, or to the ”Diagrammar” article
of ’t Hooft and Veltman. Note again that so far we have only dealt with self-interacting fields,
and that the symmetry factors have not been specified. In section B.3.4 we will remove the
first of these lacunae, by discussing systems where two different fields couple to each other.

B.3.3: PHONONS in SOLIDS and LIQUIDS

When we turn to non-relativistic systems, things rapidly get more complex, for several
reasons. These include

(i) the existence in solids of a lattice, either ordered or disordered - we can no longer
simplify things by going to a momentum basis;

(ii) the finite density of excitations in the system, or of particles - this is particularly
important for fermions, as it creates a fermi sea;

(iii) the importance of temperature - we can no longer assume a background ground state.
And finally, of course, many condensed matter systems have order parameters, created

either by a spontaneously broken symmetry, or otherwise. The existence of this order pa-
rameter fundamentally changes the physics, and also changes the Feynman rules (and this is
also true in high-energy physics, in the standard model, where we also have spontaneously
broken symmetries).

We will begin simply here by looking at the case of ordinary phonons, which are the quan-
tized version of the small-amplitude oscillations that occur in any solid, liquid, or gaseous
medium. In a solid these are sometimes called ”lattice vibrations”, although they occur
whether or not the ”lattice” is ordered, and do not just involve the lattice ions. In a quan-
tum liquid at low T phonons are also well-defined, both in systems like Bose-condensed
liquids, and also in Fermi liquids; and they are also well-defined in low-T gases. In all of
these systems they lose their definition when their density and/or the temperature is high
(except at long wavelengths), because of strong phonon-phonon interactions, or because the
compressional or shear oscillations of the system are driven by collisional pressure processes.

In what follows here we will discuss phonons in an introductory way. Thus we will derive
the Feynman rules in the long wavelength regime, and discuss phonons in simple solids, either
ordered ones of simple symmetry, or disordered ones, and also in quantum liquids. We will
also ignore the interaction with electrons, impurities, or phase oscillations (in a superfluid).
The resulting theory then looks rather similar to the φ4 model of relativistic field theory, in
the limit where the mass m→ 0.

The key difference between solids and liquids, as far as oscillations of the medium are
concerned, is that solids have a finite resistance to shear forces, and so can support transverse
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shear oscillations. A liquid, by definition, will simply flow under shear forces, and so can
only support longitudinal compressional modes.

B.3.3(a) : PHONONS in LIQUIDS

In this case we assume the fundamental conservation equation, describing mass conser-
vation

d

dt
ρ(r, t) = ∂tρ+ O(ρv) = 0 (49)

where ρ(r, t) is the local density, and v(r, t) the local velocity of the fluid. So far this is a
classical description. One can then proceed in one of 2 ways.

One way is to simply treat the density and velocity as canonical variables, and quantize
them with the appropriate commutation relations, between density and velocity operators.
The other way is to start from an action for the fluid, and then use this as input for a path
integral formulation. When we come to look at phonon properly we will look at both, but
here let’s just start with the action, which we will write in terms of the variables

ρ(r, t) = ρ0 + ρ̃(r, t) (ρ0 = mean density)

v(r, t) = (~/m)Oφ(r, t) (50)

where we introduce the ”density fluctuation” variable ρ̃(r, t), and assume that ρ̃/ρ0 � 1
(appropriate to liquids); and the ”quantum phase” variable φ (we could equally have ignored
QM altogether, and written v(r, t) = (1/m)OΦ(r, t), with Φ = ~φ; this is purely a question
of definition). Then if we write the action as

S = −
∫
dDr

∫
dt

{
ρ

m

[
~
dφ

dt
+

~2

2m
(Oφ)2

]
+ ε[ρ,Oρ]

}
(51)

we find, by varying S with respect to φ and ρ̃, the following equations of motion:

(a) ∂tρ(r, t) +
~
m
O · [ρ(r, t)Oφ(r, t)] = 0 (Mass Conservation)

(b) ~∂tφ(r, t) +
~2

2m
[Oφ(r, t)]2 +

δε[ρ,Oρ]

δρ(r, t)
= 0 (F=ma) (52)

where the last term in eq. (52.b) is the variation with density of the internal energy density
ε[ρ,Oρ] of the fluid, as a functional of ρ and Oρ. Eq. (52.a) is easily seen to be equivalent
to the mass conservation equation in (49). If we write the internal pressure P (r, t) of the
liquid as P (r, t) = ρδε/δρ(r, t), and then take the gradient of eq. (52.b), we get

d

dt
v(r, t) = ∂tv(r, t) + (v · O)v(r, t) = −1

ρ
OP (r, t) (53)

which is just the Euler equation of motion for a fluid.
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To get the phonons, we now look at small oscillations of the action about its minimum.
In a relativistic field theory, this would be akin to treating the underlying fluid, with action
Smin, as the ”vacuum”, and the small oscillations are then the field we actually look at
explicitly. The result of a 2nd variation of S in eq. (51) is

S = S0 −
∫
dDr

∫
dt

[
~
m
ρ̃∂tφ+

~2ρ

2m2
(Oφ)2 +

1

2
c2

0ρ̃
2

]
∼ S0 −

∫
dDr

∫
dt

[
~
m
ρ̃∂tφ+

1

2
c2

0ρ̃
2

]
(54)

where in the 2nd form we drop the term ∝ v2, assuming we are dealing with small oscillations
of long wavelength; here we define c2

0 = ∂P/∂ρ.
Now it is straightforward to show, starting from either (54) or from (52), that the small

oscillations in this system are actually sound waves. Suppose we write (52), now dropping
the (Oφ)2 term so was done in (54), in the form

∂tρ+ O · J = 0

∂tJ + Oρ = 0 (55)

where J(r, t) = ρ(r, t)v(r, t).
We may now combine these 2 equations, by taking the time derivative of the first equation,

to get (
∂2
t − c2

0∇2
)
ρ(r, t) = 0 (56)

and we see that c0 is the sound velocity.

B.3.3 (b): PHONONS in SOLIDS

The case of solids is somewhat different because we can start with an underlying set of
lattice points (ordered or not), and write everything in terms of the displacement xj = rj−r0

j

of the j-th lattice point from its equilibrium position r0
j . Alternatively, in a continuum

approximation, one simply defines a displacement vector x(r) as a function of r in the
system. Then the following results are a standard part of elasticity theory:

(i) The change in free energy F (and at T = 0, the system energy) associated with a
determination of a solid is given by

F − F0 =
1

2

∑
cijklu

ij(r)ukl(r) + · · · (57)

where the uij(r) are the components of the strain tensor, defined as

uij(r) =
1

2

(
∂ixj + ∂jxi

)
=

1

2

(∂xi
∂rj

+
∂xj
∂ri
)

(58)
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(ii) If a force F(r) is applied to the solid in order to deform it - and here we assume that
F(r) can vary around the sample - then the change in energy is

δE = σij(r)δuij(r) (59)

where the force F is related to the stress tensor σij(r) by

Fj = ∂kσjk =
∂σjk
∂rk

(60)

Now for a general solid the coefficients cijkl(r) may be very complicated; even for a
homogeneous system which is crystalline, one needs to employ group theory to sort all this
out. We will typically look at a homogeneous and isotropic system (e.g., and amorphous
solid, or one made from a mass of tiny crystals, organized into a random conglomerate or
”polycrystalline array”, or a very highly disordered crystal). Under these circumstances
equation (57) simplifies considerably; we can write

F = F0 +
1

2

[
λu2

kk + 2µu2
ij

]
= F0 +

1

2

[
κu2

kk + µ(uij −
1

3
δiju

2
kk)

]
(61)

where

κ = λ+
2

3
µ (62)

and we have taken advantage in the 2nd form in (61) of the separation of uij into its traceless
and diagonal parts, i.e.,

uij = 1
3
δijukk + (uij − 1

3
δijukk)

(compression) (shear)
(63)

in which the traceless part describes a pure shear, and the diagonal part a pure compression
expression. The coefficients λ and µ are the ”Lame” coefficients; the coefficients κ and µ
are usually referred to as the ”Bulk modulus” and ”Shear modulus” respectively. The bulk
modulus is simply the inverse of the compressibility:

κ−1 = − 1

V

∂V

∂P
(64)

We can eliminate σij from (59) for this isotropic case, and easily find for the isotropic
case that

σij = κ δijukk + 2µ

(
uij −

1

3
δijukk

)2

(65)

thereby separating σij into its compression and shear components respectively.
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We note that for crystals, this becomes external messy - then cijkl can have up to 21
different components independent from each other. If the crystal is magnetic, with spin-
orbit coupling, it gets far worse again.

Consider now the form that oscillations will take (which will lead us to the form of the
propagator). This is easily found by composing (57) and (59), and taking the strain to come
from an applied ”source” force given by (60). Then we easily find that

Fi =
∑

cijkl ∂
jukl (66)

which for the simple isotropic case gives, after Fourier transformation to momentum space
of (66), the result (here q̂i = qi/|q|):

xi(q) =
1

q2

[
µ(δij +

1

3
q̂iq̂j) + κq̂iq̂j

]−1

F j(q) (67)

To determine the dynamics, we need to add an inertial term to the energies, i.e., use
Newton’s 2nd law,

Fi = ρẍi (68)

where as before, ρ(r, t) is the density, which we assume constant. Fourier transforming, we
then have

ρω2xi(q, ω)− q2
[
µP⊥ij (q̂) + (κ+ 4µ/3)P

‖
ij(q̂)

]
xj(q, ω) = 0 (69)

where we have defined

P
‖
ij(q̂) = q̂iq̂j ; P⊥ij (q̂) = (δij − q̂iq̂j) (70)

i.e., projection operators onto longitudinal and transverse components of q̂, respectively. We
then see that we have two sound modes, satisfying

(ω2 − c2
αq

2)xα(q, ω) = 0 (71)

with α =⊥, ‖, and

c2
‖ = (κ+ 4µ/3)/ρ

c2
⊥ = µ/ρ (72)

as the 2 sound velocities. The transverse sound, with velocity c⊥, is a shear mode, absent in
liquids.

B.3.3 (c): FEYNMAN RULES for PHONONS

From what we have done above, it is now a fairly simple matter to get the Feynman
rules. Let us first write down the generating functional for these 2 theories. For the liquid
we simply go back to (54); however there is a complicating factor, since it is written in
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terms of a ”coordinate” ρ̃(r, t) and a ”momentum” ∂tφ(r, t), and so we will write the bare
generating functional as

Z0[J ] =

∫
Dφ
∫
Dρ̃ e

−i
~

∫
dDr

∫
dt{[ ~

m
ρ̃(r,t)∂tφ(r,t)+ 1

2
c20ρ̃

2]−J(r,t)ρ̃(r,t)} (73)

where we have coupled the external source to the density fluctuations ρ̃(r, t), which is the
natural choice for the coordinate. (although in discussing superfluids, it proves to be useful
to couple to the phase).

Rather than integrate out the phase, we will use a simpler method to find the diagram
rules. Knowing that the propagator G ρ̃ρ2 (q, ω) is found by calculating a correlator 〈0 |
T {ρ̃(r, t)ρ(r′, t′)} | 0〉 (and Fourier transforming it) we will simply calculate this correlator.

To do this let’s write the fields φ(r, t) and ρ̃(r, t) as

φ(r, t) =
∑
q

( ~c0

2ρ0q

) 1
2
[
bq e

i(q·r−ωqt) + b†q e
−i(q·r−ωqt)

]
ρ̃(r, t) = i

∑
q

(~ρ0q

2c0

) 1
2
[
bq e

i(q·r−ωqt) − b†q e−i(q·r−ωqt)
]

(74)

where we have normalized things so that

[bq, b
†
q′ ] = δqq′ (75)

Then the Hamiltonian becomes (treated just as an energy-no operators):

H =
1

2

[ ρ
m
v2 + c2

0ρ̃
2
]

=
∑
q

~ωq

[
b†qbq +

1

2

]
(76)

and then we easily find that D0(r, r′; t, t′) = 〈0 | T {ρ̃(r, t)ρ̃(r′, t′)} | 0〉 works out to be

D0
ρρ(r−r′, t−t′) = −i~

∑
q

ρ0q

c0

{
θ(t− t′)ei[q·(r−r′)−ωq(t−t′)] + θ(t′ − t)ei[q·(r−r′)+ωq(t−t′)]

}
(77)

where ωq = c0q (the ”-” sign here compared to that in the function G
(0)
2 (x,x′) defined for

the φ4 theory comes because of the i factor in the definition of ρ̃(r, t) in (75)). The Fourier
transform of this is

D0
ρρ(q, ω) =

ρ0

2c0

~q

[
1

ω − (ωq − iδ)
− 1

ω + (ωq − iδ)

]
= ~ρ0

( q2

ω2 − c2
0q

2 + iδ

)
(78)

where the subscript ”ρρ” is for 〈ρρ〉. (We could also, if we had wanted, calculated D0
φφ(r, t) =

〈0 | T {φ(r, t)φ(0, 0)} | 0〉 directly.)
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The case of the isotropic solid is a little different, but the basic idea is the same. We now
have a generating functional which in the general case can be written as

Z0[Jij] =

∫
Dxk

∫
Duije

i
~
∫
dDr

∫
dt{ 1

2 [ρ0(∂txk)2−cijkluijukl]+uijJij} (79)

where Jij(r, t) is an external source, having the nature of an external stress. If we had instead
decided to couple to an external vector Jk, coupled to xk, this would have been instead an
external force source. We could also rewrite the uij in terms of the internal stress tensor
σij(r, t), and then functionally integrate over σij, instead of over uij(r, t).

Without going through the details, it will now be clear that the bare propagator for the
phonons in the isotropic solid will be given by

D0
ij(q, ω) = ~ρ0

∑
α=‖,⊥

P̂α
ij(q̂)

( q2

ω2 − c2
αq

2 + iδ

)
(80)

i.e., the sum of a longitudinal and transverse term, each travelling with different velocity.

We can now enunciate the Feynman rules for phonons:

1. As shown in the diagram (81), each phonon line has the value D0(q, ω), with D0
ij(q, ω)

given by (78) for a liquid, and by (80) for an isotropic solids; here q is the phonon spatial
momentum, and ω the frequency.

2. There will be a set of interaction vertices in the phonon system in the diagram (82) -
the general interaction taken the form, for the isotropic systems:

(a) Liquids: Vint(φ, ρ̃) =
∞∑
n=3

gnm
n!

ρ̃m(Oφ)n−m

(b) Solids: Vint(∂txk, πij) =
∞∑
n=3

gnm
n!

(∂txk)
m(πij)

n−m

These interactions are typically very complicated, even for these isotropic systems (for lattice
solids it is much worse). As a consequence one has factors

− i
~
gn,m δ

(∑
j

qj
)
δ
(∑

j

ωj
)

(83)
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for each vertex (in a solid, the momentum delta function is replaced by δ
(∑

j qj + Gj

)
,

where the {Gj} are reciprocal lattice vectors ).
3. All independent momenta and frequencies are integrated over.
4. Each diagram is multiplied by a symmetry factor.

The problem of interacting phonons is seen to be very messy, since one can have interac-
tions of arbitrary order. They are physically important, but not very enlightening, at least
for a theorist.

B.3.4: COUPLED SCALAR FIELDS

There is a multiplicity of fields in Nature. Even though physicists have succeeded in
encapsulating a large number of these into the ”standard model” (with the notable exception
of gravity), we also need to consider all the interactions between the different fields. In
condensed matter physics, one also needs to consider effective theories in different energy
ranges, where the relevant fields, and the interactions between them, change with energy
scale.

Thus it is crucial to set up QFT’s for interacting fields, and by far the most important
example of this is the interaction between fermion matter fields and the bosonic fields which
then act to mediate the indirect coupling between the fermions. The most important example
of such fermionic-bosonic interactions arises in gauge theories, which we deal with in the next
chapter. But there are also key examples that do not involve gauge fields.

In what follows we will do two things. First, we look at a very simple relativistic model
of 2 coupled scalar fields, and then we see how this translates into diagrams. Then, once
this is done, we will study a very interesting non-relativistic example of a coupled theory
in which non-relativistic fermions couple to phonons. This is the famous ”electron-phonon”
problem, and it provides a model for many field theories.

B.3.4(a) : RULES and DIAGRAMS for COUPLED SCALAR FIELDS

To simplify things we will consider 2 free scalar fields, which couple via a ”cubic” coupling,
linear in one variable and quadratic in the other; the action is then

S[φ, χ] =

∫
dDx

1

2

{[
∂µφ∂

µφ−m2
0φ

2
]

+
[
∂µχ∂

µχ−M2χ2
]
− λ0φ

2(x)χ(x)
}

(90)

so that the coupling vertex in this theory is −iλ0/2~. We can think of this theory as one
in which the χ-particle is able to split into 2 φ-particles; alternatively, we can think of the
χ-field as acting like an external force or source field acting on the φ-field. Each of these
situations is shown in the diagrams - we imagine time flowing along the horizontal axis, in
order to interpret these two diagrams.
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From (90) we can easily write down a generating functional for this theory, and also the
diagram rules. The generating functional is just

Z[J, I] =

∫
Dφ
∫
Dχ e

i
~{S[φ,χ]+

∫
dDx[J(x)φ(x)+I(x)χ(x)]} (91)

where J(x) couples to φ(x), and I(x) to χ(x).
Now this is a very simple theory, as we can see from the Feynman rules, which are

obviously just
1. Assign factors

Gφ
0(k) = i~∆φ

F (k)

Gχ
0 (k) = i~∆χ

F (k)

to the internal lines of a graph (92), where we have

∆φ
F (k) =

1

k2 −m2 + iδ
, ∆χ

F (k) =
1

k2 −M2 + iδ
(93)

and all other conventions are as before.
2. Assign a factor −iλ/2~ to the vertex connecting the 2 fields, so we have a total

contribution (−iλ/2~)δ
(∑

j kj
)

at each vertex, as shown in the diagram (94).
3. Integrate over all independent momenta.
4. Multiply each diagram by a symmetry factor.

Before looking at this theory from a functional point of view, let’s just glance at the
different kinds of graph we expect to find here. It is useful to make a classification of these
according to the different connected correlators G(c)

n (x1, . . . , xn) and Γn(x1, . . . , xn) that we
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have seen before. In what follows I just show some graphs, with no attempt to evaluate
them in any way. Let’s begin with the generator W [J, I] of connected correlators, as shown
in the diagrams (95), (96) and (97),

These last 2 sets of graphs refer to the connected propagator for the φ-field and χ-field
respectively. The first graph listed is the free graph, and then we go to successively higher
graphs. Note that not all graphs at each order are shown - you can easily find the others.
We will comment on structural features of these graphs later on.

The diagrams for what is usually called the ”3-point vertex” show what are in effect
corrections to the bare interaction vertex in the 1st graph (graph (98 (i))). These are usually
called ”vertex corrections”. They also appear implicitly in the graphs shown above in (95)-
(97) for W , Gφ2 (k), and Gχ2 (k).

From here we can go on to higher scattering correlators, and there is now a very large
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choice. Before going on to enumerate graphs, let’s just note how easy it is to formulate this
mathematically. We can generate the usual expression for W [J ], a functional of a simple
field source, to one which involves a pair of fields and a pair of sources - we simply expand
(91) as

W [J, I] = −i~Z[J, I]

=
∞∑
n=1

∞∑
m=1

1

(n+m)!

(−i
~
)n+m

∫
dDx1 · · · dDxn

∫
dDy1 · · · dDym

× Gφχnm(x1 . . . xn, y1 . . . ym) J(x1) · · · J(xn) I(y1) · · · I(ym) (99)

thereby defining the correlators Gφχnm(x1 . . . xn, y1 . . . ym), involving n external sources J(xk)
and m external sources I(yk). In the same way we can define the generating functional for
vertex parts as

Γ[φ, χ] =
∞∑
n=0

∞∑
m=0

1

(n+m)!

∫
dDx1 · · · dDxn

∫
dDy1 · · · dDym

× Γφχn,m(x1 . . . xn, y1 . . . ym) φ(x1) · · ·φ(xn) χ(y1) · · ·χ(ym) (100)

with n external φ-legs, and m external χ-legs.
Now let’s look at some graphs for these - you should note that you could have written

down these graphs without having (99) and (100) at your disposal (just as we did for (95)-
(98)). And we can continue in this vein. Each of these diagrams has a definite physical
meaning - this is one of the reasons for paying attention to them - and as you get used to
them you will be able to interpret them.

Now let’s look at all this from a functional point of view. We can’t actually give a closed
analytic solution to this problem, and so various approximation techniques can be applied
- we will see some of these later. However, let’s look here at a method that only involves
things we’ve already seen. The idea is to first solve a simpler problem, in which one of the
2 fields is ”frozen”, and then see what happens when we unfreeze it.

B.3.4(b) : FREEZING χ(x) to a ”BACKGROUND FIELD” χ0(x)
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Suppose we drop the external field I(x) entirely, and ”freeze” the field χ(x) (which is
otherwise arbitrary) so that χ(x) → χ0(x), some fixed function of x. The external current
is now irrelevant here, because its purpose is to couple to χ(x), and change it.

If we do this, then our original problem, summarized in the double functional integral in
(91), reduces now to an effective generating functional, i.e.,

Z̃χ0 [J ] =

∫
Dφ(x) e

i
~ [S̃χ0 [φ]+

∫
dDx J(x)φ(x)] (104)

with an effective action

S̃χ0 [φ] =

∫
dDx

1

2

[
(∂µφ∂µφ)− λ0χ0(x)φ2(x)

]
(105)

Now it is immediately obvious that this problem is exactly solvable, since we are dealing
with an effective action which is a quadratic form in φ(x). We will write down this solution
in a minute, but it is worthwhile first looking at how to understand it physically. One way
to do this is to notice that the last term in (105) is simply an addition to the effective mass
of the field; we write

V0(x) =
1

2
λ0χ0(x)

m̃2(x) = m2
0 + V (x) (106)

i.e., we now have a spacetime dependent effective mass. But we can also think of V (x)
as a ”scattering potential”, which is dynamic (i.e., it depends on time as well as space),
which can scatter the field φ(x) (and renormalize it as well). Either way, we see that χ0(x)
and V (x) are behaving like a ”background field” through which the field φ(x) propagates,
while interacting with it. This is a simple example of a rather general method (called the
”background field method”) that we will meet again later.

Eqs. (104) and (105) are in the standard form I =
∫
Dφ e−

1
2

(φAoφ)−Boφ, with Ao =
i
~ [∂2 +m2

0 + V0(x)], Bo = (i/~)J , giving I = |Ao|−
1
2 e−

1
2

(BoA
−1
o Bo), i.e., we have

Z̃V0 [J ] =
( det(∂2 +m2

0)

det(∂2 +m2
0 + V0)

) 1
2

exp

[
− i

2~

∫
dDx

∫
dDx′ J(x)∆̃

(
x, x′ | V0

)
J(x′)

]
(107)

where we have normalized Z̃V0 [J ] so that when V0(x) → 0, we get back Z0[J ], i.e., we have
divided by the free field determinant as we did for Z0[J ] (compare section B.1, eqs. (53)
and (56)). The renormalized propagator ∆̃

(
x, x′ | V0

)
is the inverse of the renormalized

differential operator, i.e.,(
∂2 +m2

0 + V0(x)− δ
)

∆̃
(
x, x′ | V0

)
= −δ(x− x′) (108)

i.e., ∆̃
(
x, x′ | V0

)
is the field propagator in the background field V0(x) (cf. section B.1, eq.

(57)). This equation is easy to solve - it has the same structure as a simple QM scattering
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problem, and we get

∆̃
(
x, x′ | V0

)
= ∆F (x, x′) +

∫
dDy∆F (x, y)V0(y)∆̃

(
y, x′ | V0

)
(109)

or in k-space
∆̃
(
kk′ | V0

)
= ∆F (k) [1− V0(kk′)∆F (k)]−1 (110)

If we employ the standard manouevre to change determinants to traces, by with

det Â = exp
{

Tr ln Â
}

(111)

then we can write Z̃V0 [J ] as

Z̃V0 [J ] = e
i
~ S̃V0 [J ] (112)

where the ”effective action” is

S̃V0 [J ] =
1

2

{
i~Tr ln

(∆̃
(
x, x′ | V0

)
∆F (x, x′)

)
−
∫
dDx

∫
dDx′ J(x)∆̃

(
x, x′ | V0

)
J(x′)

}
(113)

where the 1st term in S̃V0 [J ] is often just incorporated into a prefactor, as in (107).
This result is easily interpreted both diagrammatically and physically. Let’s first look at

the diagrams.

(a) Prefactor: We can expand the ”log” in the prefactor; provided the argument x is
small, i.e., ln(1 + x) =

∑∞
n=1(−1)n+1xn/n, and so we can write the ”Tr ln term as

Tr ln
(∆̃
(
x, x′ | V0

)
∆F (x, x′)

)
= − Tr ln

[
1− V (x)∆̃F (x, x′)

]
= −

∫
dDxV (x)∆F (0)

+
1

2

∫
dDx

∫
dDx′ V (x)∆F (x− x′)V (x′)∆F (x′ − x) + . . .

(114)

leading to the result

Tr ln
(∆̃(x, x′ | V0)

∆F (x, x′)

)
=

∞∑
n=1

(−1)n

n

n∏
j=1

∫
dDxj V (xj)∆F (xj − xj+1)δ(x1 − xn) (115)

which we can show diagrammatically in a way similar to the diagrams for connected cor-
relators, except that here the combinatorics are different; we have the series shown in the
diagram (116)

(b) Exponent: The 2nd term in (113) has a form we’ve seen before. The key is that we
have a propagator ∆̃(x, x′ | V0) which has external sources J(x), J(x′) at its ends. Thus
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we have a structure in which, according to (109) and (110), V (x) acts repeated to give us a
geometric series shown in the diagram (117), which shows graphically the repeated scattering
of the free field off the background field, with interaction potential V0(x).

B.3.4(c) : REINTRODUCING (”UNFREEZING”) the χ− FIELD:

In the diagrams we’ve just seen, and in the equations they refer to, we see that V0(x)
plays the role of some ”frozen” external field configuration - it does not itself get varied, and
we do not care where it comes from.

However, ”unfreezing” the χ-field means giving it back its dynamics (and also, if we
wish, putting back the external driving field I(x) acting on χ(x)). Thus, the full generating
functional Z[J, I] for the coupled field system is (compare (90), (91), (104), and (105))

Z[J, I] =

∫
Dχ e

i
~

(
S0[χ]+

∫
dDxχ(x)I(x)

)
Z̃χ[J ] (118)

where Z̃χ[J ] is just (112) with V0(x) = 1
2
λ0χ0(x) → 1

2
λ0χ(x), and χ(x) is now free to vary.

The interpretation of (118) is interesting - it is as though we were evaluating the generating
functional for the χ-field, except that now every configuration χ(x) is weighed by a factor
Z̃χ[J ]. The great advantage of this result from the QFT point of view is that it is exact and
non-perturbative in form; there is no expansion in coupling constants. We can, if we wish,
generate a diagrammatic expression for Z[J, I] from (118), using the usual techniques - this
will give us back the diagrams we saw in previous pages for Z[J, I], expanded in λo.

However there are many other ways of generating diagrammatic expressions, and just to
give a taste of one of them, and also to introduce a useful trick, I briefly discuss here another
approach, which relies not on taking functional derivatives with respect to external currents
J(x) and/or I(x), but instead with respect to the internal fields themselves.
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To do this, let’s just briefly look again at the formula derived in section B.1, eqs. (81)-
(83). There is another way of getting the result in (82) which illustrates the use of ”shift
operators”. As discussed in Appendix on functionals, the identity

ea(d/dx)f(x) = f(x+ a) (119)

generalizes to
e
∫
dx A(x)(δ/δψ(x)) F [ψ(x)] = F [ψ(x) + A(x)] (120)

when we deal with functionals. So let’s apply this idea now to the partition function or
generating functional. We have, for a simple φ-field, the result

Z[J ] = N
∫
Dφ e

i
~

(
S0[φ]+

∫
dDx (J(x)φ(x)−V [φ])

)
= N

∫
Dφe

i
~S0[φ] e

∫
dDx φ(x)δ/δψ(x) e

i
~
∫
dDx
(
J(x)ψ(x)−V [ψ]

)
|ψ=0 (121)

i.e., we use (120) and then set ψ = 0 at the end to get F [A]; this is a neat trick for changing
variables (NB: NN is just a normalizing factor).

However, we notice now that the first 2 terms in (121) can be written

I =

∫
Dφ e

i
~S0[φ] e

∫
dDx φ(x)δ/δψ(x)

=

∫
Dφ e

−i
2~

∫
dDx φ(x)(∂2+m2)φ(x) e

∫
dDx φ(x)δ/δψ(x)

= exp
i

~

∫
dDx

∫
dDx′

1

2
δ/δψ(x) ∆F (x− x′) δ/δψ(x′) ≡ Z0[−i~δ/δψ(x)] (122)

so that we can rewrite Z[J ] as

Z[J ] ∝ Z[−i~δ/δψ(x)] e
i
~
∫
dDx
(
J(x)ψ(x)−V [ψ]

)
|ψ=0 (123)

which is just eq. (82) of section B.1, derived in a different way, using the ”shift operator” in
(120).

Now let’s use this trick on our results for the coupled field problem. In (118) we are
only interested in the external field I(x), coupling to χ(x), if we want to look at correlation
functions involving χ(x). Let’s now think of χ(x) as some kind of ”quantum environment”
for the central field φ(x); we will be interested in what φ(x) does, and so all we want to do
is to integrate out χ(x), and assume it is otherwise passive.

This means we are interested in

Z[J, 0] =

∫
Dχ e

i
~S0[φ] Z̃χ[J ] (124)

which is going to tell us how the φ-field behaves, once we have functionally averaged over
the χ-field.
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Now we do the same as above, writing

Z[J, 0] =

∫
Dχ(x) e

i
~S0[φ] ed

Dx χ(x)δ/δψ(x)Z̃ψ[J ] |ψ=0

= e
i~
2

∫
dDx

∫
dDx′ δ/δψ(x) ∆F (x−x′) δ/δψ(x′) Z̃ψ[J ] |ψ=0 (125)

where ∆χ
F (x, x′) is the Feynman propagator for the free χ-field (with mass M , not m0).

Substituting in Z̃χ[J ] from (112) and (113), we get the exact expression:

Z[J, 0] = e
i~
2

∫
dDx

∫
dDx′ δ/δψ(x) ∆F (x−x′) δ/δψ(x′)

× e
− 1

2
Tr ln
(∆̃(x, x′ | ψ)

∆F (x, x′)

)
exp
−i
2~

∫
dDx

∫
dDx′ J(x) ∆̃(x, x′ | ψ) J(x′) |ψ=0

(126)

Although this expression is exact, it is also rather forbidding. However, its physical
meaning is interesting. As written in (125), and spelled out explicitly in (126), we see that
we are operating on the diagrams in Z̃ψ[J ], shown in eqs. (116) and (117), with an operator
exp

{
i

2~

∫
δ/δψ ∆F δ/δψ

}
which has the effect of linking or joining up all the external χ-lines

which are attached to the φ-field lines in (116) and (117). Thus all the ”dangling” χ-fields
that are attached to the external fields in (116) and (117) get joined up or ”sewn together”
to produce a result of Z[J, 0].

To see how this works, let’s do something with (126). One of the most useful things to

calculate is the 2-point function G(φ)
2 (x, x′), which tells us how the φ-field propagates - we

already saw some diagrams for this in eq. (96). This is just given, in the usual way, by the
2nd functional derivative of Z[J, 0] with respect to J(x), taken at J = 0. We can easily do
this, but the result is rather messy. However, we can also do an expansion in ”loops” of
Z[J, 0] in (126) (we will look in more detail later at loop expansions, which are equivalent to
semiclassical expansions - we already mentioned them in the previous pages of this section).
All the loops in (126) are coming from the ”prefactor” in the expression for Z̃ψ[J ], i.e., from

the exp
[
−1

2
Tr ln(∆̃/∆F )

]
term - compare eq. (116). So if simply suppress this term entirely

(i.e., make it equal to unity) then we will get all the graphs for Z[J, 0] without loops. The
result turns out to be quite elegant. Starting from

Z[J, 0] −→ e
i~
2

∫
dDx

∫
dDx′ δ

δψ(x)
∆χ
F (x−x′) δ

δψ(x′) e
−i
2~

∫
dDx

∫
dDx′ J(x) ∆̃(x,x′|ψ) J(x′) |ψ=0

(no loops) (4)

we immediately find that

G(φφ)
2 (x, x′) −→ e

i~
2

∫
dDx

∫
dDx′ δ

δψ(x)
∆χ
F (x−x′) δ

δψ(x′) G̃2(x, x′ | ψ) |ψ=0

(no loops) (5)
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where
G̃2(x, x′ | ψ) = i~∆̃2(x, x′ | ψ) (129)

with ∆̃2(x, x′ | ψ) the Feynman propagator in the presence of the field ψ(x), i.e., the propa-
gator satisfying (

∂2 +m2
0 +

1

2
λ0ψ(x)

)
∆̃2(x, x′ | ψ) = −δ(x− x′) (130)

(compare eq. (108)). Now if we expand the exponential in (128), we see that its effect is to
operate an even number of times on G̃2(x, x′ | ψ), and each time it does this, it produces
another pair of lines for the φ-field, joined by the interaction line ∆χ

F (x, x′), with coupling
constant 1

2
λ0 at each vertex. Thus, e.g.,

i~
2

δ

δψ(x)
∆χ
F (x− x′) δ

δψ(x′)
G̃2(x, x′ | ψ) |ψ=0

=
−λ2

0

4
(ik)2

∫
dDx1

∫
dDx2∆F (x− x1)∆F (x1 − x2)∆F (x2 − x′)∆χ

F (x1 − x2)

=
(iλ0

2

)2
∫
dDx1

∫
dDx2 G

φ
2(x− x1)Gφ

2(x1 − x2)Gφ
2(x2 − x′)Gφ

2(x1 − x2) (131)

which is shown at the top. It is then easily seen that the expansion of (128) gives the series
of graphs shown in the figure (132) - we have no loops:

We can also see, if we look again at (116), how we can add back the loops into this
expansion. This, if we include only the 1st term in (116), we are adding back ”tadpole”
diagrams into Gφ2 (x, x′), the 1st one of which is shown at the bottom. Repeated application
of the functional derivatives, according to (128), will then generate all possible combinations
of tadpoles with non-loop interactions, all mediated by the χ-field propagator G̃2(x, x′) =
i~∆̃χ

F (x, x′) given in eq. (93). Two such diagrams, both 4th-order in the coupling constant,
are shown at the top. By adding in more loop terms, we see that we can generate all possible
graphs for Gφ2 (x, x′).
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We see that we have now found a way of calculating the correlators for any kind of
coupled field problems, in some kind of diagrammatic expansion. In later sections we will
show different sorts of expansions, based on these exact results, to get useful answers.

B.3.5: The COUPLED ELECTRON-PHONON SYSTEM

As we have already seen, real phonons in real solids are complicated. The main reason
for this is that one has both transverse and longitudinal phonons, even in a homogeneous
isotropic solid, and far more complicated modes in a crystal. This means that the study of
electron-phonon interactions in a real solid is very technically demanding, and of no special
interest in a general course of QFT. For those interested in this, there are quite a few books
and reviews that deal with it.

3.2.5 (a) TOY MODEL for ELECTRON-PHONON INTERACTIONS

There is a ”toy model” that is often employed to study electron-phonon interactions,
which is of some interest as a problem in the QFT of coupled fields. In this model we make
the following assumptions:

(a) The Hamiltonian of the system has a simple electron-phonon coupling with no struc-
ture - in fact the Hamiltonian is taken to be

H =
∑
kσ

εkσc
†
kσckσ +

∑
q

~Ωq(b†qbq +
1

2
) + λ0

∫
d3rψ†σ(r)ψσ(r)φ(r) (133)

where φ(r) is the phonon amplitude previously defined in (74), and ψ†σ(r), ψσ(r) are the
Fourier transforms of c†kσ, ckσ, and are electron creation and annihilation operators. We
have already known the Feynman rules for the electrons and phonons here; they were given
in (81)-(83), and in (88) and (89). Thus all we are adding to this is the coupling vertex,
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which amounts to the rules:

Phonon propagator: D0(q, ω) = i~
Ω2

q

ω2 − (Ωq − iδ)2
(134)

Electron propagator: Gσσ
′

0 (k, ε) = i~δσσ′
[
θ(k− kF )

~ε− E0
k + iδ

+
θ(kF − k)

~ε− E0
k − iδ

]
(135)

where we define
E0

k = ε0k − µ (136)

and electron-phonon vertex:

−
iλ)

~
δ
(∑

j

qj + kj
)
δ
(∑

j

εj + ωj
)

(137)

(b) The dispersion relation Ωq for the electrons will be assumed to be quite simple. First,
in this toy model one ignores the difference between longitudinal and transverse phonons, just
assuming simple longitudinal phonons. We then assume there are only 2 phonon branches,
as shown at the top, as follows:

(i) Acoustic Phonons: This is just ordinary sound, with a dispersion relation

Ωq = c0q +O(q2) (138)

where c0 is the sound velocity; the higher corrections come from both the lattice structure
and from phonon-phonon couplings;

(ii) Optical Phonons: These are high frequency oscillations that do not exist in a liquid,
but arise in solid because one can have anti-phase oscillations between neighboring ions.
Then the dispersion relation is

Ωq = Ω0 +O(q2) (139)

with Ω0 the optical phonon energy gap; typically the term ∼ O(q2) has a negative coefficient.

With this simple model one can understand some rather important aspects of the electron-
phonon interaction.
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Note, incidentally, that in texts and in the literature you will often find different ex-
pressions from (134) for the propagator. The reason for this is that while we have been
using the ”density-density” correlator (cf. eqs. (74)-(78)), many authors instead use the
”phase-phase” correlator Dφφ0 (rr′, tt′), defined by

Dφφ0 (rr′, tt′) = 〈0 | T̂ {φ(r, t)φ(r′, t′)} | 0〉 (140)

which gives a different result for D0(q, ω). For those who are interested, the appendix on
Feynman rules and Feynman diagrams gives details of these different definitions.

Now let’s look briefly at the sort of calculations one can do with models like this. I
will consider 2 cases, each of which has an enormous literature devoted to it, we will barely
scratch the surface.

B.3.5 (b) ELECTRON-PHONON INTERACTIONS in a METAL

In this system we have a finite-density electron systems interacting with phonons - only
the interaction with acoustic phonons is important. A proper treatment takes account of the
electron-electron interactions as well, but we ignore these for the moment. Let’s now look
at some basic results for this system.

(i) Electron Self-Energy: As we saw back in section B.1, we can separate off a ”self-
energy part” from the total electron Green function G2(k, ε); see eqs. (47)-(49) of section B.1.
We have already seen some graphs for this in eq. (96) of this section - for the electron-phonon
problem we have the graphs shown, to lowest order:

Now let’s evaluate the lowest-order graph shown here (NB: the ”tadpole graph”, shown
in (96)(ii), is zero for the electron-phonon system). This is given by

iΣ(k, ε) =
(−iλ0

~2

)2
∑
q

∫
dω

2π
G0(k− q, ε− ω)D0(q, ω)

= iλ2
0

∑
q

∫
dω

2πi
Ωq

[
1

ω − Ωq + iδ
− 1

ω + Ωq − iδ

]

×

[
1− fk−q

ε− ω − εok−q + iδ
+

fk−q
ε− ω − εok−q − iδ

]
(142)

where we have used the notation fk = f(εok); note that fk → θ(kF−|k|) for the Fermi function
at T = 0. Now we just need to do a contour integral to get the frequency integration done -
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there are 2 contributions to this integral:

(a) The contribution coming from the product with the 2 poles shown, in the ω-plane, is∫
dω

2πi

1

ω − Ωq + iδ

1− fk−q
ε− ω − εok−q + iδ

=
1− fk−q

ε− εok−q − Ωq + iδ
(143)

where we have used Cauchy’s theorem, i.e., that

f(z) =

∮
dω

2πi

f(ω)

ω − z
(144)

and closed the integral as shown in the diagram, circling below the pole at ω = ε− εok−q + iδ.

(b) The other contribution is∫
dω

2πi

1

ω + Ωq − iδ
fk−q

ε− ω − εok−q − iδ
=

fk−q
ε− εok−q − Ωq − iδ

(145)

circling the pole at ε = −Ωq + iδ.
The other 2 contributions to Σ(k, σ) give zero - both poles are then on the same side of

the real axis (both above, or both below) and so the contour integration gives zero.
The final result is then

Σ(k, σ) = λ2
0

∑
q

Ωq

[
1− fk−q

ε− εok−q − Ωq + iδ
+

fk−q
ε− εok−q + Ωq − iδ

]
(146)

in which the first term corresponds to the intermediate state with an electron in a particle
state above the Fermi surface, and the 2nd to where it is in a hole state below the Fermi
surface.

Actually, because the phonon energies are so small, the corrections coming from
∑

(k, σ)
to the electron energy εok are only appreciable near the Fermi surface.
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(ii) Phonon-mediated Electron-Electron interaction: Let’s now look at the 4-point
vertex for electron-electron scattering via phonons. We have seen the diagrams in eq. (102);
for the electron-phonon problem we have the diagram (147)

Now let’s write this as Γ4(kk′ q) = − i
~Veff (kk′ q), where the interaction Veff (kk′ q) is

a renormalized version of the bare interaction λ0. Then the lowest contribution is

− i
~
Veff (kk′ q) → − i

~
V0(q)

=

(
i

~

)2

D0(q, ω) = − i
~
λ2

0

Ω2
q

ω2 − (Ωq − iδ)2
(148)

and we see that

V0(q, ω) = λ2
0

Ω2
q

ω2 − (Ωq − iδ)2
→ −λ2

0 (if ω � Ωq) (149)

a result which is crucial to the theory of conventional electron-phonon superconductors,
where the crucial energies are low. In real superconductors, electron-electron interactions
partially screen this attractive interaction, but not fully.

There are corrections to this result - the 2nd diagram in (147) changes the effective vertex
λ0 in V0(q, ω). The change is

− i
~
δΛ(k,q) =

(
−iλ0

~
)3
∑
q′

∫
dω
′

2π

{
G0(k− q′, ε− ω′)D0(q′, ω

′
)G0(k + q− q′, ε+ ω − ω′)

}
(150)

which is actually fairly messy to evaluate. In the standard theory of the electron-phonon
interaction this contribution is rather crucial - it was first evaluated by Migdal, who showed
it to give a small correction to the bare vertex. This is not because λ0 is small, but because
the phonon energies � the Fermi energy. Thus the vast majority of intermediate electrons
do not feel the correction, and the two diagrams we have just calculated turn out to be the
key contributions.
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B.3.5 (c): ELECTRON-PHONON INTERACTIONS in an INSULATOR

Let’s now look very briefly at what happens to an electron in an insulator or a semicon-
ductor. Because there is an energy gap, the coupling to high-energy optical phonons turns
out to be more important in many cases.

Now from the diagram shown above, we see that the optical phonons are much more
like Einstein phonons - almost no dispersion in q-space, and so quasi-localized in real space.
It is then useful to compare the real space and momentum space representations of both
the interaction and the diagrams. Let’s rewrite the Hamiltonian in (133) in a ”site” basis,
assuming that all electronic states are quasi-localized around sites j. Now let’s try to do a
slightly more general analysis then that embodied in (133). We label the phonon states by
indices λ (with no commitment yet as to what λ might be), and write the total Hamiltonian
in the form

H = −
∑
ij

∑
σ

tij
(
{bλ}

)
c†iσcjσ +

∑
λ

Ωλb
†
λbλ +

∑
jσ

εj
(
{bλ}

)
c†jσcjσ (147)

so that we have a ”hopping term” tij between electronic sites, and where the local energy

on site j is εj; both are now functionals of the phonon variables bλ, b
†
λ. This formalism

can be used even for a random system. A common approximation makes the following 2
assumptions:

(i) an ordered crystalline lattice;
(ii) no phonons (ie., we drop the dependence on the {bλ};
and in this case we have:

tij
(
{bλ}

)
→ toij; εok =

∑
j

toije
ik(̇rj−ri) (148)

where ri, rj label sites, and toij depends only on rj − ri; the energy εok is just the band energy
for this lattice.

More generally, we can drop these assumptions - ie., bring back the phonons and assume
an arbitrary lattice. In this case toij becomes some arbitrary function of the site indices i
and j (and we can no longer define a band energy), and we can expand the local energies in
powers of the phonon variables:

εj
(
{bλ}

)
= ε0j +

∑
λ

u
(1)
j (λ)[bλ + b†λ]

+
1

2

∑
λλ′

u
(2)
j (λ, λ

′
)[bλ + b†λ][bλ′ + b†

λ′
] + · · · (149)

tij
(
{bλ}

)
= t0ij exp

{
−
∑
λ

Vij(λ)

Ωλ

[bλ + b†λ]

}
+ · · · (150)
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where in (150) we recognize that the tunnelling amplitude tij
(
{bλ}

)
will be influenced by

phonons mainly by the alteration of the tunnelling exponent (the phonons change the dis-
tance between the 2 sites, thereby altering the electronic tunneling amplitude between or-
bitals on the 2 sites). The terms in (149) correspond to multi-phonon couplings to the
electron when it is on site j; the terms in (150) act only when the phonon is hopping be-
tween sites. We can show them diagrammatically, as shown in the figure below.

The diagram (b) at right shows the interactions involved in (149) and (150). The vertex

u
(2)
j (λ, λ

′
) emits or absorbs 2 phonons when the electron is sitting on some site - the sites

are labelled in the figures by indices 1, 2, 3, with time along the horizontal axis. The vertex
u

(1)
j (λ) has a single on site interaction; but the vertex Vij(λ) emits or absorbs a phonon
λ when the electron is hopping from site j to site i. Typically we stop the exponential
expansion at the first term, i.e., we write

tij
(
{bλ}

)
∼ t0ij

[
1−

∑
λ

Vij
Ωλ

[bλ + b†λ]

]
(151)

Now let’s suppose we have a regular lattice. Then we can Fourier transform all this back
to k-space, to get

H =
∑
kσ

εokc
†
kσckσ +

∑
q

Ωqb
†
qbq +

∑
kq

∑
σ

g(k,q)c†k+q,σckσ[bq + b†q] + etc. (152)

where we have only included the u(1) and V
(2)
ij terms, and the interaction term is the Fourier

transform of the site interaction

H =
∑
j

u
(1)
j c†iσcjσ(bj + b†j) +

∑
ij

toij
Vij
Ω0

[
c†icj(bi + b†j) + H.c.

]
(153)

so that
g(k,q) = g1(q) + g2(k,q) (154)

in which g1(q) is the Fourier transform of the first interaction term in (153), and g2(k,q)
transforms the 2nd term; and we have put Ωλ → Ω0 for all q.

Without going into any details, we can already see how different this case is from a
metal. In the first place, Ω0 is rather big, so that we can’t just stick to low-order diagrams.
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A simplifying feature comes because often we are dealing with only one, or a very few,
electrons. Then the self-energy simplifies considerably. Consider, e.g., the 1st-order graph
we already studied. Now it becomes

Σ(k, ε) =
∑
q

|g(k,q)|2 1

ε− ε0k+q − Ω0 + iδ
(155)

because now fk−q = 0 (there is no Fermi surface, and kF = 0). The energies Ω0 and toij may
well be comparable here, and so if g(k,q) is not small, there is no reason for higher graphs
to be neglected.

For many years the only sensible way of getting answers to this ”polaron model” was
to use non-perturbative path integral methods - summing diagrams was essentially useless.
However in recent years, very powerful numerical methods have become available, and these
have allowed a quantitative solution to the polaron system.

−−−−−−−−−−−−−−−−−−−−−−−

This concludes our initial snapshot of perturbative methods. Some key things that have
been left out are:

(i) Finite-temperature perturbation theory, and graphical rules for QFT at finite T .
These are particularly important in condensed matter systems.

(ii) Perturbation theory and Feynman rules for more complex theories, e.g., spin systems,
lattice systems, disordered systems, and strongly-correlated systems in condensed matter
theory; and systems of higher spin in relativistic QFT.

(iii) Gauge theories - these include QED, QCD or Yang-Mills theory and the standard
model and quantum gravity, as well as a host of condensed matter examples.

(iv) More general relations that hold between field-theoretic objects, both in perturbation
theory and beyong; these include Schwinger-Dyson equations, Ward identities, and so on.

(v) Other non-perturbative approximation techniques.

In future chapters we will be filling in these gaps.
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