
B2. Fermionic Path Integrals

Whether we look at many-particle systems in terms of operators or in terms of path
integrals, there is a fundamental fact in Nature that we have to face up to, i.e., the existence
of quantum statistics and the difference this imposes on the path existing in many-fermion
(as opposed to many-boson) systems.

To see why there must be a crucial difference in the paths, it suffices to consider the two
processes shown in the figure.

In (a) we see 2 identical particles pass through the some spacetime point. As we know
this is perfectly OK for bosons, but not for fermions (the exclusion principle). And in the
2nd diagram (b), 2 fermions exchange positions, a manoeuvre which does nothing to the
boson pair wave-function, but which multiplies the fermion pair wave-function by a factor
−1.

The way to deal with fermionic path integrals was found by Berezin in 1964, using a
Grassmann variable formulation. In what follows I explain this in a very simple way. A
better job can be done by using coherent state path integrals, but this would take us a little
far afield. Then, by way of example, the path integral propagator is given for non-interacting
Dirac fermions; and we discuss the interacting non-relativistic electron gas.

B.2.1 GENERATING FUNCTIONAL for FERMIONS

Let us first recall the basic operator algebra for fermionic operators ck, c
†
k; we have the

results:

{ck, ck′} = ckck′ + ck′ck = 0

{ck, c†k′} = ckc
†
k′ + c†k′ck = δkk′

c2
k = (c†k)

2 = 0 (1)

so that ckck′ = −ck′ck and ckc
†
k′ = δkk′ − c†k′ck; recall also that the number operator for

fermions is
nk = c†kck (2)
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Now let’s consider an algebra of ”Grassmann variables” ηj = (ηj1 , ηj2 , . . . , ηjn), i.e., Grass-
mann variable with n components. The simplest one to consider is the 1-dimensional variable
or Grassmann number η, and we specify that

{η, η} = 0 (so η2 = 0) (3)

as a consequence of which any function f(η) can be written

f(η) = f0 + ηf1 (4)

since all terms ≈ O(η2) are zero. Now define ”left” and ”right” derivatives of these, such
that −→

d

dη
η =

d

dη
η = 1, η

←−
d

dη
= −1 (5)

d

dη
f(η) = f1, f(η)

←−
d

dη
= −f1 (6)

While sticking with the 1-d Grassmann numbers, let’s ask how this works if we have a whole
set {ηj} of these numbers. Then it is clear that we will have

{ηi, ηj} = 0 (7)

so that η2
j = 0; in the same way, a general function will be of the form f(ηj) = aj + bjηj, and

so on. The derivatives will now obey

−→
d

dηi
(ηjηk) = δikηj − δijηk

(ηjηk)

←−
d

dηi
= δijηk − δikηj (8)

and the analogue of the [ρ, x] commutator for bosons is{
d

dηi
,
d

dηj

}
= δij (1)

which for 1-d Grassmann numbers becomes:{
d

dη
, η

}
= 1 (9)

and finally we have {
d

dηi
,
d

dηj

}
= 0 (10)

so that
(
d
dη

)2

= 0.
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This last result, that d
dη

d
dη

= 0, indicates that to define integration over Grassmann
variable is not so obvious, since it apparently means that the operation of differentiation
does not have an inverse integration operation. However we now argue that any sensible
definition of integration must make an integral independent of any change of variable, i.e.,
that ∫ ∞

−∞
dηf(η) =

∫ ∞
−∞

dηf(η + a) =⇒
∫
dη = 0∫
dηη = 1 (11)

where the latter is really just a normalization convention. Comparing eqtns. (5) and (11),
we see that integration and differentiation do the same things to a function f(η), i.e., they
are the same operation; it follows that∫

dη

∫
dη =

∫
dη

(
d

dη

)
=

d2

dη2
= 0 (12)

Finally, let us look at the analogue of conventional Jacobian, produced by changing
variables in an integration. Suppose we change variable as follows:

η → ζ and let : η = aζ + b (13)

Now, our definition of integration will be∫
dηf(η) ≡ d

dη
f(η) (14)

so that if we start from the integral

I =

∫
dη f(η)

=

∫
dη f(aζ + b) (15)

we also have, by definition, that

I =
d

dη
f(aζ + b) =

(
dζ

dη

)
d

dζ
f(aζ + b)

=
1

a

d

dζ
f(aζ + b) =

1

a

∫
dζf(aζ + b) (16)

The key point to notice here is that the answer is not what we would have naively derived
by a straightforward change of variable inside the integral; in other words, the manoeuvre∫

dηf(η) →
∫
dζ dη

dζ
f(aζ + b) = a

∫
dζf(aζ + b) = a

∫
dζf(aζ + b) is WRONG!
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We see here how we must always define integration according to eq. (15); thus, the
Jacobian is the inverse of what we would expect. The result in eq. (16) is easily generalized
to a multi-dimensional integral over Grasssmann variable, to give

I = intdθ1 . . . θnf(θ1, . . . , θn) =

∫
dζ1 . . . dζn J

−1
θζ f(ζ1, . . . , ζn) (17)

where the Jacobian Jθζ is

Jθζ =

∣∣∣∣∂θi∂ζj

∣∣∣∣ (18)

a result which is easily proved by induction; and in the same way, we can write that if

θi = Mijζj =⇒
n∏
i=1

θi = |Mij|
n∏
j=1

ζj (19)

where |Mij| = detMθζ .
Typically we will be dealing with exponentials of quadratic forms in Grassmann variables;

i.e., Gaussian functions of Grassmann variables, of form

I(A) =
n∏
j=1

∫
dη̄jdηj exp

[∑
kl

η̄kAklηl

]
→

n∏
j=1

∫
dη̄jdηj

n∏
k=1

n∏
l=1

(1 + η̄kAklηl) (20)

where the last form comes from expanding the exponential as in eq. (4). We can see how
things will work for an arbitrary matrix Akl by looking at the 2-dimensional case. Let
η = (η1 η2), so that

η̄η = (η̄1η1 + η̄2η2) (21)

(where we think of this as multiplying a column vector by its complex row transpose); also

(η̄η)2 = 2η̄1η1η̄2η2 (22)

and higher powers of η̄η are zero; consequently we have∫
dη̄

∫
dη e−η̄η =

∫
dη̄1

∫
dη̄2

∫
dη1

∫
dη2 (η̄1η1η̄2η2) = 1 (23)

and so for the 2-d Gaussian integral we find∫
dη̄1

∫
dη1

∫
dη̄2

∫
dη2 exp

[
2∑

k,l=1

η̄kAklηl

]
= (A11A22 − A21A12) = det |A| (24)

and in the n-dimensional case∫
dη̄

∫
dη e−(η,Aη) =

n∑
j=1

∫
dη̄j

∫
dηje

∑
kl η̄kAklηl = det |A| (25)
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Actually in physical applications we will be interested in Grassmann-variable integrals in
which external sources acting on fields ψ̄ and ψ will be introduced. If we denote the sources
themselves by η̄ and η, then the kind of integral we will be evaluating has the form, in n
dimensions, of an integral

In(η̄, η) =
n∏
j=1

∫
dψ̄j

∫
dψj exp

{∑
i

∑
j

ψ̄iAijψj ·
∑
j

(ψ̄jηj + η̄jψj)

}
(26)

and with simple change of variable (shift)

ψj = χj +
∑
k

A−1
jk ηk, ψ̄j = χ̄j +

∑
k

η̄kA
−1
kj (27)

we then integrate over the χj and χ̄j, having diagonalized the quadratic form in (26). The
result is

In(η̄, η) = e−
∑
jk η̄jA

−1
jk ηk det |A| (28)

So far so good - we now have all the results we need to deal with fermionic path inte-
grals. It simply remains to generalize these results to the infinite dimensional Hilbert spaces
appropriate to a QFT, retaining the rules of integration over Grassmann variables that we
have found. We therefore introduce fermionic field variable ψ(x), ψ̄(x), which are postulated
to satisfy relations analogous to (1)-(13), ie.,

{η(x), η(x′)} = {η̄(x), η̄(x′)} = {η̄(x), η(x′)} = 0

{η(x), ψ(x′)} = {η̄(x), ψ̄(x′)} = {η̄(x), ψ(x′)} = {η(x), ψ̄(x′)} = 0 (29)

and {
δ

δη̄(x)
, η̄(x′)

}
=

{
δ

δη(x)
, η(x′)

}
= δ(x− x′) (30){

δ

δη(x)
, η̄(x′)

}
=

{
δ

δη̄(x)
, η(x′)

}
=

{
δ

δη(x)
,

δ

δη(x′)

}
= 0 (31)

and finally ∫
dψ(x) = 0∫
dψ(x) ψ(x) = 1 (32)

Now, with all these preliminaries accomplished, we can turn to a fermionic field theory.
Let’s first look at the non-interacting case, and consider a free field Lagrangian of form (with
sources):

L0(ψ̄, ψ; η̄, η) = ψ̄(x)G−1
0 (x− x′)ψ(x′) + (η̄(x)ψ(x) + ψ̄(x)η(x)) (33)
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where G0(x− x′) is the inverse of the ”kinetic energy” or free field operator that appears in
the Lagrangian (we write it in this way because we will find that G0(x− x′) is the free field
propagator, as expected). To be quite general we have written G−1

0 as if it were non-local in
x-space.

Now consider the form the partition function or generating functional will take. We wish
it to be properly normalized, so we will write it in the form

Z0[η̄, η] =

〈
0

∣∣∣∣T̂ exp

{
i

~

∫
d4x

[
η̄(x)ψ(x) + ψ̄(x)η(x)

]}∣∣∣∣0〉 (34)

=

∫
D ψ̄

∫
D ψ exp i

~

{∫
d4x

∫
d4x′ ψ̄(x)G−1

0 (x, x′)ψ(x′) +
∫
d4x

[
ψ̄(x)η(x) + η̄(x)ψ(x)

]}∫
D ψ̄

∫
D ψ exp i

~

∫
d4x

∫
d4x′ ψ̄(x)G−1

0 (x, x′)ψ(x′)

(35)

Now we know from eqs. (25) and (28) how to evaluate the numerator and denominator
of eq. (35). The determinants cancel, and so we just get

Z0[η̄, η] = exp
−i
~

∫
d4x

∫
d4x′ η̄(x)G0(x− x′)η(x′) (36)

a form which you will immediately recognize, as being like that for a simple 1-particle Green
function subject to a noise ”source”. The only difference here, and from the scalar field case,
is the presence of 2 sources η̄(x) and η(x) (with their Grassmann commutation relations).

In the same way as for ordinary QM, or for φ4 theory, we can also deal with interactions.
Suppose we now have a Lagrangian

L(ψ̄, ψ; η̄, η) = L0(ψ̄, ψ; η̄, η)− V (ψ̄, ψ) (37)

with L0 given by eq. (33) and V (ψ̄, ψ) some self-interaction term (the simplest form being
a ”φ4” theory, with V (ψ̄, ψ) = V0(ψ̄ψ)2). Then it is easy to show that

Z[η̄, η] = exp

{
− i
~

∫
d4x V

(
i~
δ

δη̄
,−i~ δ

δη

)}
Z0[η̄, η] (38)

where V
(
i~ δ

δη̄
,−i~ δ

δη

)
is just V (ψ̄, ψ), we have replaced ψ̄ by i~ δ

δη̄
, and replaced ψ by −i~ δ

δη
.

This is derived as before, by writing everything as a polynomial expansion.

Consider now the form taken by the correlation functions. Let us define

G2n(x1, . . . , xn, x
′

1, . . . x
′

n) = 〈0 | T̂
{
ψ(x1) · · ·ψ(xn) ψ̄(x

′

1) · · · ψ̄(x
′

n)
}
| 0〉 (39)

with the ψ̄′s to the right of ψ′s. Note that these correlation functions must satisfy the
antisymmetry requirements

G2n(x1, x2, . . . ) = −G2n(x2, x1, . . . )

G2n(. . . , x
′

1, x
′

2, . . . ) = −G2n(. . . , x
′

2, x
′

1, . . . ) (40)
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But we can also write these correlation functions in terms of functional derivatives of
Z[η̄, η], just as we did for φ4 theory. We assume that all functional derivative operators act
to the right in what follows, so that from eq. (31) we have{

δ

δη̄(x)
, η̄(x′)

}
=

{
δ

δη(x)
, η(x′)

}
= δ(x− x′){

δ

δη̄
, η

}
=

{
δ

δη
, η̄

}
= 0{

δ

δη̄
,
δ

δη̄

}
=

{
δ

δη
,
δ

δη

}
= 0 (41)

Let us now apply this to functional derivatives of Z[η̄, η]. We see that we have

〈ψ(x)〉 = 〈0 | T̂
{
ψ(x)e

i
~
∫
d4x[η̄(x)ψ(x)+ψ̄(x)η(x)]

}
| 0〉 = −i~ δZ

δη̄(x)
(42)

〈ψ̄(x)〉 = 〈0 | T̂
{
ψ̄(x)e

i
~
∫
d4x[η̄(x)ψ(x)+ψ̄(x)η(x)]

}
| 0〉 = i~

δZ

δη(x)
(43)

and we note the key difference of sign. However for any correlator like eq. (39), with an
equal number of ψ and ψ̄ operators, the sign is always positive - you should check this - and
we get

G2n(x1, . . . , xn, x
′

1, . . . x
′

n) = ~2n δ2nZ

δη̄(x1) . . . η̄(xn)δη(x
′
1) . . . η(x′n)

|η̄,η=0 (44)

B.2.2 EXAMPLE: DIRAC FERMIONS

Our first example comes from relativistic QM or QFT, although one of the more inter-
esting realizations of the idea comes from the non-relativistic graphene systems - we have a
Lagrangian

L0(ψ̄, ψ; η̄, η) = ψ̄(x)(iγµ∂µ −m)ψ(x) + [η̄ψ + ψ̄η] (45)

where the γµ are the Dirac γ-matrices for a relativistic spin-1
2

electron, satisfying

{γµ, γν} = 2ηµν

γ5 = iγ0γ1γ2γ3 (46)

so that γ5 anticommutes with the others:

{γ5, γµ} = 0 (47)
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Note that there are various different conventions in common use for the γ-matrices, involving
different representation for them. 1 The one we will use writes the 4× 4 matrices as:

γ0 = τ̂z ⊗ Î
γj = iτ̂y ⊗ σ̂j
γ5 = τ̂x ⊗ Î (48)

where the {τj}, {σ̂j} are Pauli matrices, and Î is the unit matrix. Since this is not a course in
particle physics, I will not go into any more detail here on the Dirac equation. In relativistic
QED the Dirac operators act on 4-d spinors. It is quite illustrating to refer to the condensed
matter application of these spinors, where the τ̂j operate in ”particle-hole” space (so that,
eg., τ̂x changes a particle to a hole, or vice-versa), and the σ̂j operate in spin space (so that
σ̂x flips a spin from | ↑〉 to| ↓〉 or vice-versa).

Now from eq. (36) we can write the partition function for this system as

Z0[η̄, η] = exp

{
−i
~

∫
d4x

∫
d4x′ η̄(x) [(iγµ∂µ +m)∆F (x− x′)] η(x′)

}
(49)

where ∆F (x) is just the Feynman propagator, defined as before by

(∂2 +m2)∆F (x) = −δ4(x) (50)

and with the usual representation

∆F (x) =
∑
k

eikx

k2 −m2 + iδ
(51)

To prove that
G0(x) = (iγµ∂µ +m)∆F (x) (52)

as assumed in eq. (49), it suffices to evaluate

G−1
0 (x)G0(x) = (iγµ∂µ −m)(iγµ∂µ +m)∆F (x)

= −(∂2 +m2)∆F (x) = δ4(x) (53)

which verifies eq. (52). Note that G0(x) is not quite the propagator for the Dirac field - we
can find this by evaluating the functional differential of Z0[η̄, η] in eq. (49) to find

G0
2(x− x′) = ~2 δ2Z0[η̄, η]

δη̄(x)δη(x′)
|η̄,η=0 = i~G0(x− x′) (54)

Note that in k-space the Dirac fermion free propagator takes a much simpler form - one
simply has

G2(k) = i~G0(k) =
i~

γµkµ −m+ iδ
(55)

1Another common convention for the γ-matrices has γ0 = τ̂x ⊗ Î, γj = −iτ̂y ⊗ σ̂j , and γ5 = τ̂z ⊗ Î.
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Later on we will see how these Dirac fermions can be used to describe a whole variety
of relativistic and non-relativistic systems. We will also add interactions - this leads many
important applications.

B.2.3 EXAMPLE: ELECTRON FLUID

The 2nd example is one that is central to condensed matter physics, just as Dirac fermions
are central to QED. Thus we now deal with non-relativistic fermions, for which a separation
between space - this variable is made - we no longer have Lorentz invariance.

Consider a set of non-relativistic fermions - these could be electrons, or some other set
of fermions like 3He atoms. Now in ordinary QM we would simply start from a Hamiltonian
of form

H =
N∑
j=1

−~2

2m
52
j +

1

2

∑
i 6=j

V (ri − rj) (56)

but this is not what we want for a field theory. The next step is then to invent 2nd-quantized
field operators satisfying:

{ĉσ(r), ĉ†
σ′

(r
′
)} = δσσ′δ(r− r

′
)

{ĉ†σ(r), ĉ†
σ′

(r
′
)} = {ĉσ(r), ĉσ′ (r

′
)} = 0 (56’)

where σ = ± labels the spin projection; and we want these operators to act on a Fermi
vacuum state according to

ĉσ(r)|0〉 = 0 〈0|ĉ†σ(r) = 0 (57)

Since the electron system here is spatially homogeneous, according to eqtns. (56) and
(56’), it is better to go over to D-dimensional momentum space, so that we define

ĉk,σ =

∫
dDr ĉσ(r)eik·r

ĉ†k,σ =

∫
dDr ĉ†σ(r)e−ik·r (58)

and so then

{ĉk,σ, ĉ†k′ ,σ′} = δσσ′δkk′

{ĉ†k,σ, ĉ
†
k′ ,σ′
} = {ĉk,σ, ĉk′ ,σ′} = 0 (59)

and we can now write a Hamiltonian in terms of these 2nd-quantized operators as

H =
−~2

2m

∫
dDr ĉ†σ(r)∇2ĉσ(r) +

1

2

∫
dDr

∫
dDr′ ĉ†σ(r)ĉσ(r)V (r− r′)ĉ†

σ′
(r
′
)ĉσ′ (r

′
)

=
∑
k,σ

εokĉ
†
k,σ ĉk,σ +

1

2

∑
k,k′

∑
q

∑
σ,σ′

ĉ†k+q,σ ĉk,σV (q)ĉ†
k′ ,σ′

ĉk′−q′ ,σ′ (60)
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where V (q) =
∫
dDr V (r)eiq·r, and εok = ~2k2/2m.

However this is still not what we want - although eq. (60) defines a specific non-relativistic
field theory, we want to write everything in terms of path integrals. To do this one can go
through the usual ”Trotter product” manoeuvre that we used for 1-particle mechanics; the
result is now written as

Z[η̄, η] =

∫
D ψ∗kσ

∫
Dψkσ exp

{
i

~

∫
dτ
∑
k,σ

[L(ψ∗kσ, ψkσ) + (η̄kσψkσ + ψ∗kσηkσ)]

}
(61)

where the Lagrangian in this mixed ”time-momentum” representation has the form

L(ψ∗kσ, ψkσ) =
∑
k,σ

[~ψ∗kσ∂τψkσ − H(ψ∗kσ, ∂τψkσ)] (62)

where H(ψ∗kσ, ψkσ) takes the same form as eq. (60), but with ĉ†k,σ, ĉk,σ now substituted with
ψ∗kσ, ψkσ. A point of notation here - the ψ∗kσ, ψkσ are Grassmann variables, NOT operators
like the ĉ†k,σ, ĉk,σ. We could just as easily have called them ψk,σ, ψ̄k,σ, so as to be consistent
with ηk,σ, η̄k,σ; but we have not done this so as to distinguish the ψkσ, ψ

∗
kσ used here from

the ψk,σ, ψ̄k,σ used for relativistic Dirac fermions.
If we ignore the interactions in eqs. (60)-(62), we can go through the same kind of

development that we already gave for the Dirac electron propagator, to find an expression
for Z0[η̄, η], and from there obtain the correlation functions for these free non-relativistic
electrons. Thus, our FREE PARTICLE ACTION is

S0 =

∫
dτ
∑
k,σ

ψ∗kσ(τ)
[
~∂τ − ε0k

]
ψkσ(τ) (63)

or, if we Fourier transform to frequency space,

S0 =

∫
dε

2π

∑
k,σ

ψ∗kσ(ε) [~ε− εok]ψkσ(ε) (64)

Then the normalized partition function for the system is

Z0[η̄, η] =

∫
D ψ∗kσ

∫
Dψkσ e

i
~
∑

k,σ

∫
dε
2π {ψ∗kσ(ε)[~ε−εok]ψkσ(ε) + [η̄kσ(ε)ψkσ + ψ∗kσηkσ]}∫

D ψ∗kσ
∫
Dψkσ e

i
~
∑

k,σ

∫
dε
2π
ψ∗kσ(ε)[~ε−εok]ψkσ(ε)

(65)

and if we do the Gaussian integrals as before, we get, for Z0[η̄, η], that

Z0[η̄, η] = exp

[
i

~

∫
dε

2π

∑
k,σ

η̄kσ(ε)

(
1

~ε− εok

)
ηkσ(ε)

]
(66)

Note the simplicity of this form compared to what we wrote for ZDirac0 in eq. (49); this is
simply because we wrote eq. (49) in a position or time eigenbasis, in which it is non-diagonal;
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it can easily be rewritten in an energy or momentum basis, when it will look like eq. (66).
Since the ηkσ(ε) are Grassmann variables, we can also write eq. (66) as the product:

Z0[η̄, η] =
∏
ε

∏
k,σ

[
1 + η̄kσ(ε)

(
i/~

~ε− εok

)
ηkσ(ε)

]
(67)

where the products must be taken to the limit as k and ε become continuous.
The correlation functions must now be found. It is easy to show that

G2(k, ε) = ~2 δ2Z0[η̄, η]

δη̄kσ(ε) δηkσ(ε)
=

i~
~ε− εok

(68)

and so on, for the higher correlation functions.

NOTE ON THESE EXAMPLES: There are 2 important points not discussed here,
regarding these examples. The first is that we did not include any interactions - we will
rectify this in the next section. The second is that we assumed that the density of the
fermions was negligible. But for fermions this is not usually realistic, at least in a many-
body system. We deal with this properly when discussing finite temperatures. However the
remedy here is simple; we make the substitution

εok → εok − µ non− relativistic fermions(
|k|2 +m2

) 1
2 →

(
|k|2 +m2

) 1
2 − µ Dirac fermions (69)
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