
Phys 508: HOMEWORK ASSIGNMENT No (1)
Sunday Feb 5th 2017

DUE DATE: Monday Feb 27th 2017.
Assignments handed in late will not receive a full mark.

This assignment is mostly to do with functional methods and with graphical calculations,
both with relativistic scalar fields and with non-relativistic fermions and bosons.

QUESTION (1): COUPLED SCALAR FIELDS

Consider a pair of relativistic coupled massive scalar fields with the action

S[ϕ, χ] =

∫
d4x

1

2

{[
∂µϕ∂

µϕ−m2
0ϕ

2
]
+

[
∂µχ∂

µχ−M2χ2 − 2g

4!
χ4

]
− λ0ϕ

2(x)χ(x)

}
with interfield coupling vertex −iλ0/2~, and a self-coupling vertex −(ig/~)/4! for the χ-field.

(i) By adding external currents J(x), I(x) to the generating functional for this theory,
coupling to ϕ(x) and χ(x) respectively, find the two Schwinger-Dyson equations for the
theory, one for each field, giving explicit expressions for the relevant functional derivatives
of the action.

(ii) Give the diagram rules for the free field propagators and the vertices for this theory.
Then show all diagrams for (a) the ϕ-field self-energy, and (b) the χ-field self-energy, up to
4th-order in the combined couplings (ie., including diagrams up to order g4, λ4o, and λ

2g2).

(iii) Now we are going to derive an effective action for the system. We first ”freeze” the
χ-field, writing χ(x) → χ0(x), where χ0(x) is some fixed configuration. Now show that we
can write the generating functional in the form

Z[J, I] =

∫
Dχ

∫
Dχo δ(χ− χ0) e

i
~ (Sχ[χ0]−

∫
Iχ0) Z̃[χo, J ]

where Sχ is the action for the χ-field, and Z̃[χo, J ] is the result of integrating over the ϕ-field
at fixed χ0; you should derive the form of Z̃[χo, J ].

(iv) Finally, show how we can write Z̃[χo, J ] in a diagrammatic expansion in powers of
the vertex V0 = −iλoχ0/2~; and show the diagrams contributing to this expansion up to
order V 2

0 .
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QUESTION (2): MATSUBARA DIAGRAMS

We look at the simple non-relativistic Fermion Loop, or ”particle-hole bubble”, at finite
T , in the Matsubara formalism; we will assume spin-1/2 free fermions in a system that
is isotropic and translationally invariant. We will also apply a magnetic field, so that the
particle dispersion is just ϵokσ = ~2|k|2/2m − σγH, where σ = ±, and γ is a constant; and
we write the Fermi distribution function as fkσ = f(ϵokσ).

(i) Recall that for continuum spinless fermions, the pair bubble is given by

πo(q, z) =
∑
k

fk − fk+q

z − (ϵk+q − ϵk)

For a spin-1/2 fermion system in a finite fieldH, find the analogous expressions for πσσ′
o (q, z) =∫

dϵ
∑

kG
σ
o (k + q, ϵ + z)Gσ′

o (k, ϵ) for the cases σ = σ′, and σ = −σ′. Neglect any orbital
effects from the magnetic field - you can assume the fermions are electrically neutral.

(ii) Now do the same for the case of a finite 1-d system in a fieldH, with fermions confined
between 2 plates a distance L apart, and boundary conditions ψ(x = 0) = ψ(z = L) = 0,
to find an expression for the vacuum polarization function π↑↑

o (z, ql), where ql refers to the
wave-vector associated with the l -th confined state. Show that it can be brought to the form
of a sum proportional to

∑
n(F (z, l , L)− n2)−1, where F (z, l , L) is a specific function of its

arguments.

(iii) Now consider the case where L → ∞ (ie., the 1-dimensional continuum limit), and
do the momentum integral to find an explicit expression for π↑↑

o (q, z)

QUESTION (3): VERTEX CORRECTIONS

We consider the 2 graphs shown in the figures (Figs 1 and 2) - they are the lowest order
vertex corrections for (i) a Fermi system with instantaneous 4-point interactions Vo, and (ii)
a set of fermions interacting via bosonic phonon-like excitations. We wish to evaluate these
graphs by doing the frequency sums - we will not evaluate the momentum sums.

(i) Calculate and expression for the first graph (Fig 1) at finite T , involving instantaneous
interactions Vo, using the Matsubara formalism.

You can assume that the external boson line is a phonon, coupled to the fermion via a
coupling constant λo.

(ii) Consider the 2nd graph shown in Fig. 2. Calculate this graph at finite T , doing only
the frequency sums, and assuming the Hamiltonian

H =
∑
kσ

ϵkσc
†
kσckσ +

∑
q

~Ωq(b
†
qbq +

1

2
) + λo

∫
d3rψ†

σ(r)ψσ(r)ϕ(r) (5)
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with coupling λo. Again, as in part (i), the external bosonic line is a phonon, coupled to the
fermion via a coupling constant λo.

QUESTION (4): GAUGE THEORIES

In ordinary QED, the field strength is defined in terms of the vector potential by Fµν(x) =
∂µAν(x)− ∂νAµ(x).

(i) Show that Fµν(x) is invariant under the gauge transformation Aµ(x) → Aµ(x) +
∂µθ(x), and that

∂αFµν(x) + ∂νFαµ(x) + ∂µFνα(x) = 0

which is just the ’Bianchi identity’ for electrodynamics.
Then show that the Dirac matter Lagrangian, viz., L = ψ̄(x)[iγµ∂µ − m]ψ(x), is not

invariant under the transformation ψ(x) → eieθ(x)ψ(x), where e is the charge, but that a
simultaneous gauge transformation on ψ(x) and Aµ(x) leads to a gauge-invariant form for
the combined action of matter and gauge fields.

(ii) Now consider a theory with massive photons, so that the free photons have action

S[A] =

∫
d4x Aµ(x) [(∂

2 +m2)ηµν − ∂µ∂ν ] Aν(x) (1)

Show that this action is not gauge invariant. Then derive the expression for the free
generating functional Zo[J

µ] defined by coupling Aµ(x) to an external source Jµ(x), and
give the form for the propagator Do

µν(q) for the photon. By Fourier transforming this in the
static limit (where the frequency of the photon → 0), find the new form of the Coulomb
interaction between particles coupling to Aµ(x) via an interaction

∫
eAµ(x)J

µ(x).

(iii) Now let us consider the equation of motion for a spin-2 bosonic field hµν(x), a tensor
field, which can be shown to take the form

∂2hµν(x)− 2∂α∂ν h̄µα(x) = −2λT̄µν(x)

where Tµν(x) is the energy-momentum tensor, and the bar symbol over a tensor quantity tµν
denotes t̄µν = tµν − 1

2
tηµν , where t = tαα, ie., we use the summation convention.

Show that if we make the gauge transformation hµν(x) → hµν(x) + [∂µχν(x)+(∂νχµ(x)],
then the equation of motion is unaffected. Then show that if we make the gauge choice that
∂αh̄

µα = 0, we get the equation of motion ∂2hµν(x) = −2λT̄µν(x).

See Figures on next page

3



k+q, ε + ω

k, ε

q, ω

Fig 1 Fig 2

Q, Ω

k+q, ε + ω

k, ε

q, ω


	2017_P508--HW1--funct+graphs
	HW1-2017-Figs 1+2
	Slide Number 1


