Phys 508: HOMEWORK ASSIGNMENT No (1)

Friday January 19th 2016

DUE DATE: Monday Feb 1st 2015.
Assignments handed in late will not receive a full mark.
This assignment is mostly to do with revising and extending bits and pieces that were partially covered in the QFT 1 course, primarily to do with graphical calculations, and with scalar fields. Some of the questions are quite short, others longer - the very last question is the longest.

QUESTION (1): SCALAR FIELDS

1(A) Interacting Scalar Field: We are going to look at ϕ^{3} theory, and start off in the zero-dimensional case. Thus we begin by considering an 'amplitude' function $A(\phi)=e^{i S(\phi) / \hbar}$ of a variable ϕ, where the exponent $S(\phi)=-\left(m^{2} \phi^{2} / 2+\lambda_{o} \phi^{3} / 6\right)$. We define a generating functions $Z(J)=\int d \phi A(\phi) e^{i \phi J / \hbar}$ and 'correlators' g_{n} by the power series expansion

$$
Z(J)=\sum_{n=0}^{\infty}\left(\frac{i}{\hbar}\right)^{n} \frac{1}{n!} g_{n} J^{n}
$$

1.A.(i) Find, for this zero-dimensional theory, the form of $Z_{o}(J)$, the 'free distribution', ie., where $\lambda_{o}=0$; and show that for $Z_{o}(J)$, the free correlators $g_{2 n}^{(o)} \propto(2 n-1)!!/ m^{2 n}$, where $(2 n-1)!!=[(2 n-1)(2 n-3) . . \times 3 \times 1]$ is the double factorial.

Then, for finite λ_{o}, derive an expression for $Z(J)$ in terms of differential operators $d / d J$ acting on $Z_{o}(J)$.
1.A.(ii) Show that $Z(J)$ for this theory obeys the differential 'equation of motion'

$$
\left[\frac{\lambda_{o} \hbar}{2} \frac{d^{2}}{d J^{2}}+i m^{2} \frac{d}{d J}+\frac{J}{\hbar}\right] Z(J)=0
$$

1.A.(iii) Now we go over the full $4-d$ field theory, of a scalar field theory with action

$$
S[\phi]=\int d^{4} x\left[\frac{1}{2}\left[\partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-m^{2} \phi^{2}(x)\right]-\frac{\lambda_{o}}{6} \phi^{3}(x)\right]
$$

in 4 spacetime dimensions.
Without going through the derivation, give the diagrammatic rules for the vertices and free propagator for this theory; and then draw all graphs up to 2-loop for the 2-point vertex Γ_{2} and the 3-point vertex Γ_{3}.

1(B) Complex Scalar Field: We consider a complex field $\Phi(x)$ with components $\phi^{\dagger}(x)$ and $\phi(x)$, in 4 d -spacetime, and having the action and generating functional

$$
\begin{gathered}
S[\Phi]=\int d^{4} x \frac{1}{2}\left(\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-m^{2}|\phi|^{2}\right)-V\left(|\phi|^{2}\right) \\
\mathcal{Z}\left[J, J^{\dagger}\right]=\int \mathcal{D} \phi \int \mathcal{D} \phi^{\dagger} e^{\frac{i}{\hbar}\left(S\left[\phi, \phi^{\dagger}\right]+\frac{1}{2} \int d^{4} x\left(J \phi^{\dagger}+J^{\dagger} \phi\right)\right)}
\end{gathered}
$$

where we have introduced two external currents $J(x), J^{\dagger}(x)$.
1.B.(i) Show that the generating functional for the free theory (with $V\left(\phi, \phi^{\dagger}\right)=0$) is

$$
\mathcal{Z}_{o}\left[J, J^{\dagger}\right]=\exp \left[\frac{2 i}{\hbar} \int d^{4} x d^{4} x^{\prime} J^{\dagger}(x) \Delta_{F}\left(x-x^{\prime}\right) J\left(x^{\prime}\right)\right]
$$

with $\Delta_{F}(x)$ defined in the same way as for real scalar fields.
1.B.(ii) Now show that we can write the full generating functional $\mathcal{Z}\left[J, J^{\dagger}\right]$ in terms of $\mathcal{Z}_{o}\left[J, J^{\dagger}\right]$ in the form

$$
\mathcal{Z}\left[J, J^{\dagger}\right]=\exp \left[-\frac{i}{\hbar} \int d^{4} x V\left(\frac{-\hbar^{2} \delta^{2}}{\delta J(x) \delta J^{\dagger}(x)}\right)\right] \mathcal{Z}_{o}\left[J, J^{\dagger}\right]
$$

where in the argument of $V\left(|\phi|^{2}\right)$ we have substituted $-\hbar^{2} \delta^{2} / \delta J(x) \delta J^{\dagger}(x)$ in place of $|\phi|^{2}$.
1.B.(iii) You can read off the diagram rules from the last expression. Assuming that $V(|\phi|)=g_{o}|\phi|^{4} / 4$!, write down in 4-momentum space the 2 lowest-order graphs for the self-energy (2-point vertex part) for this theory.

QUESTION (2): MATSUBARA DIAGRAMS

2(A) Single Fermion Loops: We look at the simple non-relativistic Fermion Loop at finite T, in the Matsubara formalism; we will assume free fermions in a system that is isotropic and translationally invariant, so that the particle dispersion is just $\epsilon_{\mathbf{k}}^{o}=\hbar^{2}|\mathbf{k}|^{2} / 2 m$; and we write the Fermi distribution function as $f_{\mathbf{k}}=f\left(\epsilon_{\mathbf{k}}^{o}\right)$
2.A.(i) The bare 'pair propagator' (NOT the pair polarization bubble!) for a nonrelativistic fermionic system at finite temperature T is defined as $\chi_{o}(q)=\sum_{k} G_{o}(k) G_{o}(q-k)$, where $k=(\mathbf{k}, \epsilon)$ and $q=(\mathbf{q}, \omega)$ are 4-momenta. Show, by doing the Matsubara sum, and setting the external frequency argument to z, that

$$
\chi_{o}(\mathbf{q}, z)=\sum_{\mathbf{k}} \frac{1-f_{\mathbf{k}}-f_{\mathbf{q}-\mathbf{k}}}{z-\left(\epsilon_{\mathbf{q}-\mathbf{k}}^{o}+\epsilon_{\mathbf{k}}^{o}\right)}
$$

2.A.(ii) Now consider the polarization part, defined as $\pi_{o}(q)=\sum_{k} G_{o}(k+q) G_{o}(k)$ in the same notation as above, and given as usual in Matsubara notation by

$$
\pi_{0}\left(\mathbf{q}, i \omega_{m}\right)=\sum_{\mathbf{k}} \frac{f_{\mathbf{k}}-f_{\mathbf{k}+\mathbf{q}}}{i \omega_{m}-\left(\epsilon_{\mathbf{k}+\mathbf{q}}^{o}-\epsilon_{\mathbf{k}}^{o}\right)}
$$

We can actually do the momentum integral in 1 dimension. Carry this out, assuming that $T=0$, so that the Fermi function $f(\epsilon)=\theta(\mu-\epsilon)$, where μ is the chemical potential. This should give you an analytic expression for $\pi_{o}\left(\mathbf{q}, i \omega_{m}\right)$.
2.A.(iii) Now a rather more lengthy calculation. Consider the lowest-order "crossed" graph for the electron-phonon self-energy $\Sigma_{\mathbf{p}}\left(i \epsilon_{n}\right)$, shown in the figure. Evaluate the frequency sums for this graph, to obtain an expression involving only integrations over the real-space momenta \mathbf{q} and \mathbf{q}^{\prime}.

See Figure on next Page

END of QUESTION SHEET 1

