Phys 508: HOMEWORK ASSIGNMENT No (4)

Thursday 26th March, 2015

DUE DATE: Wed Apr 15th 2015.

Assignments handed in late will not receive a full mark.

QUESTION (1): ANTIFERROMAGNETS

We consider an antiferromagnetic system in d spatial dimensions, with Hamiltonian

$$
\begin{equation*}
\mathcal{H}=-\frac{1}{2} K_{2} \sum_{j}\left(\hat{S}_{j}^{z}\right)^{2}-\sum_{i j} J_{<i j>} \hat{\mathbf{S}}_{i} \cdot \hat{\mathbf{S}}_{j} \tag{1}
\end{equation*}
$$

with the sum $<i j>$ over nearest lattice neighbours, and $J_{i j}<0$ in the exchange interaction.
1(i) Divide the system into 2 sublattices of spins, A and B, so that spins in A interact only with spins in B. Find the coupled equation of motion for spins \mathbf{S}_{i}^{A} on sublattice A and spins \mathbf{S}_{j}^{B} on sublattice B.

1(ii) Now assume that the spins have ordered with spins on sublattice A/B oriented in the $\pm \hat{z}$ direction. Treating the spins classically, and writing $\mathbf{S}_{j}= \pm S \hat{z}+\mathbf{s}_{j}$ for sublattice A / B, find the coupled equations of motion for the \mathbf{s}_{j} on each sublattice. Then, Fourier transforming to functions

$$
\begin{equation*}
\mathbf{a}_{\mathbf{q}}=\sqrt{2 / N} \sum_{i \in A} e^{-i \mathbf{q} \cdot \mathbf{r}_{i}} \mathbf{s}_{i} \quad \quad \mathbf{b}_{\mathbf{q}}=\sqrt{2 / N} \sum_{j \in B} e^{-i \mathbf{q} \cdot \mathbf{r}_{j}} \mathbf{s}_{j} \tag{2}
\end{equation*}
$$

find the coupled eqtns. of motion of the variables $\mathbf{m}_{\mathbf{q}}^{ \pm}(t)=a_{\mathbf{q}}^{ \pm}+b_{\mathbf{q}}^{ \pm}$and $\mathbf{n}_{\mathbf{q}}^{ \pm}(t)=a_{\mathbf{q}}^{ \pm}-b_{\mathbf{q}}^{ \pm}$, where

$$
\begin{equation*}
a_{\mathbf{q}}^{ \pm}=a_{\mathbf{q}}^{x} \pm i a_{\mathbf{q}}^{y} \quad b_{\mathbf{q}}^{ \pm}=b_{\mathbf{q}}^{x} \pm i b_{\mathbf{q}}^{y} \tag{3}
\end{equation*}
$$

and from this derive the dispersion relation for the spin wave modes.
1(iii) The above analysis is inadequate for 2 reasons - it misses out the Berry phase, and it assumes long-range order where none may exist. Let us now write, for a 1-d lattice

$$
\begin{equation*}
\mathbf{S}_{j}(t)=S \alpha_{j}\left[1-\left|\mathbf{m}_{j}(t)\right|^{2}\right]^{1 / 2} \mathbf{1}_{j}(t)+S \mathbf{m}_{j}(t) \tag{4}
\end{equation*}
$$

where $\alpha_{j}=(-1)^{j},\left|\mathbf{l}_{j}\right|=1$, with the constraint $\mathbf{l}_{j} \cdot \mathbf{m}_{j}(t)=0$, and we assume $\left|\mathbf{m}_{j}\right| \ll 1$.
Find the long-wavelength continuum form of the generating functional for this system, again using the Hamiltonian given above, in terms of an effective action $S_{\text {eff }}[\mathbf{l}(x, t), \mathbf{m}(x, t)]$; and demonstrate explicitly that the Berry phase term can be written in terms of the Pontryagin invariant.

QUESTION (2): IR BEHAVIOUR of GAUGE THEORIES

One can learn a great deal about the IR properties of 4-d QED by studying a simpler $2+1$-dimensional model of non-relativistic fermions coupled to photons, with renormalized photon propagator

$$
\begin{equation*}
D_{i j}(q)=\left(\delta_{i j}-\hat{q}_{i} \hat{q}_{j}\right) D_{\perp}(q)=\left(\delta_{i j}-\hat{q}_{i} \hat{q}_{j}\right) \frac{1}{\chi|\mathbf{q}|^{2}-i \gamma \omega /|\mathbf{q}|} \tag{5}
\end{equation*}
$$

where $q=(\mathbf{q}, \omega)$, and i, j are spatial indices only - the electric part of the propagator is ignored. We write the fermionic propagator $\mathcal{G}(p, \epsilon)$ as

$$
\begin{equation*}
\left.\mathcal{G}(p)=\int \mathcal{D} \mathbf{A}(q) e^{\frac{i}{2} \sum_{q} A_{i}(q) D_{i j}^{-1}(q) A_{j}(-q}\right) \bar{G}_{p}(q \mid \mathbf{A}) \tag{6}
\end{equation*}
$$

where $\bar{G}_{p}(q \mid \mathbf{A})$ is a functional of a specific 'frozen' field configuration $\mathbf{A}(q)$ with components $A_{i}(q)$; its Fourier transform satisfies the differential equation

$$
\begin{equation*}
\left[i \partial_{t}-\frac{1}{2 m}\left(-i \nabla-g_{o} \mathbf{A}(x)\right)^{2}+\mu\right] \mathcal{G}\left(x, x^{\prime} \mid \mathbf{A}\right)=-\delta\left(x-x^{\prime}\right) \tag{7}
\end{equation*}
$$

where q is the Fourier transform of $x-x^{\prime}, x=(\mathbf{r}, t)$, etc., and g_{o} is a bare coupling.
2(i) Let us write \bar{G} in 'proper time' representation as a WKB expansion of form

$$
\begin{equation*}
\bar{G}_{p}(x \mid A)=i \int_{0}^{\infty} d s e^{-i s G_{o}^{-1}(p)} e^{i \Psi_{p}(s, x \mid A)}=i \int_{0}^{\infty} d s e^{-i s\left(\epsilon-\varepsilon_{\mathbf{p}}+i \delta_{p}\right)} e^{i \sum_{n} g_{o}^{n} \psi_{n}(s ; p, x \mid A)} \tag{8}
\end{equation*}
$$

where ϵ and $\varepsilon_{\mathbf{p}}$ are measured from μ. Find a solution for $\psi_{n}(s ; p, x \mid A)$ in recursive form, and show that

$$
\begin{equation*}
\psi_{1}(s ; p, x \mid A)=\frac{g_{o}}{m} \sum_{q} e^{i q x} \frac{1-e^{-i s\left(\omega-\Omega_{\mathbf{p}}(\mathbf{q})\right)}}{\omega-\Omega_{\mathbf{p}}(\mathbf{q})} \mathbf{p} \cdot \mathbf{A}(x) \tag{9}
\end{equation*}
$$

where $\Omega_{\mathbf{p}}(\mathbf{q})=\varepsilon_{\mathbf{p}+\mathbf{q}}-\varepsilon_{\mathbf{p}}$.
2(ii) Now, by doing the functional integration over $\mathbf{A}(x)$, and using the approximation that $\Psi=\psi_{1}$, show that we can write $\mathcal{G}(p)$ in the form

$$
\begin{equation*}
\mathcal{G}(p)=i \int_{0}^{\infty} d s e^{-i s G_{o}^{-1}(p)} \exp \left[i \frac{g^{2}}{m^{2}} \sum_{q} D_{i j}(q) p_{i} p_{j} \frac{1-e^{-i s\left(\omega-\Omega_{\mathbf{p}}(\mathbf{q})\right)}}{\left(\omega-\Omega_{\mathbf{p}}(\mathbf{q})\right)^{2}}\right] \tag{10}
\end{equation*}
$$

2(iii) Finally, show that for a particle on a circular 2-d Fermi surface, but with finite frequency ϵ, we can do the integral over q to get the result in the IR limit:

$$
\begin{equation*}
\mathcal{G}_{p_{F}}(\epsilon)=i \int_{0}^{\infty} e^{i s(\epsilon+i \delta)-\tilde{g}^{2}(i s)^{1 / 3}} \tag{11}
\end{equation*}
$$

which can then be written in terms of Airy functions; here we define a renormalized coupling $\tilde{g}^{2}=g_{o}^{2}\left[\Gamma\left(\frac{2}{3}\right) p_{F} / 8 \pi^{2} \sqrt{3}\left(\chi^{2} \gamma\right)^{1 / 3} m\right]$.

END of QUESTION SHEET 4

