
Phys 508: HOMEWORK ASSIGNMENT No (4)
Thursday 26th March, 2015

DUE DATE: Wed Apr 15th 2015.
Assignments handed in late will not receive a full mark.

QUESTION (1): ANTIFERROMAGNETS

We consider an antiferromagnetic system in d spatial dimensions, with Hamiltonian

H = −1

2
K2

∑
j

(Ŝzj )
2 −

∑
ij

J<ij>Ŝi · Ŝj (1)

with the sum < ij > over nearest lattice neighbours, and Jij < 0 in the exchange interaction.

1(i) Divide the system into 2 sublattices of spins, A and B, so that spins in A interact
only with spins in B. Find the coupled equation of motion for spins SAi on sublattice A and
spins SBj on sublattice B.

1(ii) Now assume that the spins have ordered with spins on sublattice A/B oriented in
the ±ẑ direction. Treating the spins classically, and writing Sj = ±Sẑ + sj for sublattice
A/B, find the coupled equations of motion for the sj on each sublattice. Then, Fourier
transforming to functions

aq =
√

2/N
∑
i∈A

e−iq·risi bq =
√

2/N
∑
j∈B

e−iq·rjsj (2)

find the coupled eqtns. of motion of the variables m±
q (t) = a±q + b±q and n±

q (t) = a±q − b±q ,
where

a±q = axq ± iayq b±q = bxq ± ibyq (3)

and from this derive the dispersion relation for the spin wave modes.

1(iii) The above analysis is inadequate for 2 reasons - it misses out the Berry phase, and
it assumes long-range order where none may exist. Let us now write, for a 1-d lattice

Sj(t) = Sαj [1− |mj(t)|2]1/2 lj(t) + Smj(t) (4)

where αj = (−1)j, |lj| = 1, with the constraint lj ·mj(t) = 0, and we assume |mj| ≪ 1.
Find the long-wavelength continuum form of the generating functional for this system,

again using the Hamiltonian given above, in terms of an effective action Seff [l(x, t),m(x, t)];
and demonstrate explicitly that the Berry phase term can be written in terms of the Pon-
tryagin invariant.
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QUESTION (2): IR BEHAVIOUR of GAUGE THEORIES

One can learn a great deal about the IR properties of 4-d QED by studying a simpler
2 + 1 -dimensional model of non-relativistic fermions coupled to photons, with renormalized
photon propagator

Dij(q) = (δij − q̂iq̂j)D⊥(q) = (δij − q̂iq̂j)
1

χ|q|2 − iγω/|q|
(5)

where q = (q, ω), and i, j are spatial indices only - the electric part of the propagator is
ignored. We write the fermionic propagator G(p, ϵ) as

G(p) =

∫
DA(q) e

i
2

∑
q Ai(q)D

−1
ij (q)Aj(−q) Ḡp(q|A) (6)

where Ḡp(q|A) is a functional of a specific ’frozen’ field configuration A(q) with components
Ai(q); its Fourier transform satisfies the differential equation

[i∂t −
1

2m
(−i∇− goA(x))2 + µ] G(x, x′|A) = −δ(x− x′) (7)

where q is the Fourier transform of x− x′, x = (r, t), etc., and go is a bare coupling.

2(i) Let us write Ḡ in ’proper time’ representation as a WKB expansion of form

Ḡp(x|A) = i

∫ ∞

0

dse−isG
−1
o (p)eiΨp(s,x|A) = i

∫ ∞

0

dse−is(ϵ−εp+iδp)ei
∑

n g
n
o ψn(s;p,x|A) (8)

where ϵ and εp are measured from µ. Find a solution for ψn(s; p, x|A) in recursive form, and
show that

ψ1(s; p, x|A) =
go
m

∑
q

eiqx
1− e−is(ω−Ωp(q))

ω − Ωp(q)
p ·A(x) (9)

where Ωp(q) = εp+q − εp.

2(ii) Now, by doing the functional integration over A(x), and using the approximation
that Ψ = ψ1, show that we can write G(p) in the form

G(p) = i

∫ ∞

0

dse−isG
−1
o (p) exp

[
i
g2

m2

∑
q

Dij(q)pipj
1− e−is(ω−Ωp(q))

(ω − Ωp(q))2

]
(10)

2(iii) Finally, show that for a particle on a circular 2-d Fermi surface, but with finite
frequency ϵ, we can do the integral over q to get the result in the IR limit:

GpF (ϵ) = i

∫ ∞

0

eis(ϵ+iδ)−g̃
2(is)1/3 (11)

which can then be written in terms of Airy functions; here we define a renormalized coupling
g̃2 = g2o [Γ(

2
3
)pF/8π

2
√
3(χ2γ)1/3m].

END of QUESTION SHEET 4
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