Phys 508: HOMEWORK ASSIGNMENT No (2)

Friday Feb 13th 2015

DUE DATE: Friday Feb 27th 2015.

Assignments handed in late will not receive a full mark.

QUESTION (1): ϕ^{6} THEORY

Consider the theory of a massive relativistic scalar field containing interactions up to 6-th order in the field, so that the action is

$$
\begin{equation*}
S=\int d^{4} x\left[\frac{1}{2}\left(\partial^{\mu} \phi \partial^{\mu} \phi-m^{2} \phi^{2}\right)-\frac{g_{4}}{4!} \phi^{4}-\frac{g_{6}}{6!} \phi^{6}\right] \tag{1}
\end{equation*}
$$

which is actually a quite rich theory.
(i) Draw all graphs up to 2nd order in g_{4}, g_{6}, ie., including terms up to $\sim O\left(g_{4}^{2}\right), \sim O\left(g_{6}^{2}\right)$, and $\sim O\left(g_{4} g_{6}\right)$, for the connected correlators $\mathcal{G}_{2}, \mathcal{G}_{4}$, and \mathcal{G}_{6}.
(ii) Consider the 2nd-order graph for the 4 -point vertex $\Gamma_{4}(1,2,3,4)$ which contains 4 internal lines connecting the 2 interaction vertices (there is only one such graph). Write the explicit expression for this graph, in both real spacetime and in 4-momentum space.
(iii) Derive the hierarchy of Schwinger-Dyson equations for this theory. You should find the general expression, showing how you get it, and also list the equations in this hierarchy up to all equations that include \mathcal{G}_{4}.
(iv) Finally - what form will the Bethe-Salpeter equation take for this theory, for the 4-point vertex Γ_{4}, in terms of irreducible vertices? You should show your result graphically, and give the expression for it both real spacetime and in 4-momentum space.

QUESTION (2): COUPLED SCALAR FIELDS

Now let us consider a pair of relativistic coupled massive scalar fields. Thus we now assume the action

$$
\begin{equation*}
S[\phi, \chi]=\int d^{4} x \frac{1}{2}\left\{\left[\partial_{\mu} \phi \partial^{\mu} \phi-m_{0}^{2} \phi^{2}\right]+\left[\partial_{\mu} \chi \partial^{\mu} \chi-M^{2} \chi^{2}\right]-\lambda_{0} \phi^{2}(x) \chi(x)\right\} \tag{3}
\end{equation*}
$$

with coupling vertex $-i \lambda_{0} / 2 \hbar$; there are no interactions in this theory, except those between these free fields.
(i) Find the lowest Schwinger-Dyson equations for this theory, giving explicit expressions for the relevant functional derivatives of the action.
(ii) Now derive the Ward identity relating the 3-point vertex $\Lambda_{21}^{\phi \chi}(p, q)$, for a ϕ excitation interacting with a χ excitation, in terms of the 2-point correlators $\mathcal{G}_{2}^{\phi \phi}(p)$ of the ϕ-field. You will find the comparison with the derivation for QED to be helpful.
(iii) Finally - write down and show the graphical expression for the Bethe-Salpeter equation for the 4-point vertex Γ_{4} for the ϕ-field in this theory, iterated in the Cooper channel, and show all graphs for the irreducible 4-point vertex up to 3rd order in the interaction. Once you have done this, assume that the irreducible vertex is given by the lowest-order graph alone, and derive a Schrodinger equation for a pair of particles in the non-relativistic limit, in real space, assuming that the interaction is attractive. What is the real space form for this interaction?

END of QUESTION SHEET 2

