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THERMODYNAMICS – a SUMMARY

1. Assume the system is near “Thermodynamic Equilibrium”  
(we will define this later)

2. Identify the “Thermodynamic Variables” and “state functions”

Intensive quantities: these are variables such as temperature T, pressure p and density 
ρ. Τhey are, by definition, independent of the system size.

Extensive quantities: these are variables such as mass M, internal energy U, volume V, 
magnetization M, and entropy S. They scale with the system size.

State Functions: these are functions of the thermodynamic variables which define the 
thermodynamic state of the system (eg energy U, free energy F, etc.).  

A. EMPIRICAL APPROACH:   Based on empirical observation

B. DEDUCTIVE APPROACH:   Based on a kind of axiomatic framework

0th Law of thermodynamics: If 2 systems are each in thermal equilibrium with a 3rd system, 
they are in thermal equilibrium with each other – and have the same temperature (definition). 

1st Law of thermodynamics: When energy passes between systems, then the total energy 
is conserved.

2nd Law of Thermodynamics: The sum of the entropies of interacting thermodynamic systems 
increases in time.

3rd Law of thermodynamics: The entropy of a system approaches a constant value as the 
temperature T approaches absolute zero. 



KEY THING TO REMEMBER: The structure & many of the ideas you will 
find in thermodynamic theory depend to a large extent on the history of the 
subject – which began with a study of gases, later extended to more complex 
quasi-homogeneous systems. It is actually a miracle that these ideas can be 
applied to a much broader range of systems – BUT, often we have to be rather 
careful in realizing the limitations (or we need to generalize the ideas somewhat).

SOME BASIC CONCEPTS in THERMODYNAMICS

Absolute Temperature T:  Defined so that its value represents the actual thermal energy in the 
system. The simplest way to do this is based on the pressure of a fixed volume of gas of very low 
density – then the ideal gas law is accurately obeyed, according to which

pV = nRT 

where n is the number of moles, and R=8300 J kmole-1 K-1.

If 2 systems are each in thermal equilibrium, then, from the 0-th law, they are also in mutual 
equilibrium if, when brought in thermal contact, there is no net heat transfer from one to the other. 
They then have the same temperature (by our previous definition of temperature as that quantity 
which equilibrium bodies have in common). 

Reversible Processes:    These are cyclical processes whereby a system is returned to its original state 
without any net heat transfer to the environment. (As already noted, this means that there is no change 
in total entropy S – to be defined below). 



THERMODYNAMICS  of  GASES

We learn a lot by looking at simple ideal gases. 
Consider the process where we move a piston in & 
out, alternatively compressing and expanding the 
low-density gas inside.  The state variables are the 
pressure p and volume V of the gas. 

An infinitesimal change of volume gives, for a slow 
reversible process, a change δU in internal energy equal to the work δW done 
on the gas by the piston.  

(p, V )

We then have so that 

However if the change is irreversible, heat can flow in or out of the system, 
or even be generated internally (particularly if the change is rapid). We then 

must account for this heat in the energy balance – we now 
have 

(note the sign!)

The total heat energy ∆Q involved is reflected in the path 
taken in the (p,V ) plane – it is given by the enclosed area.   

We can also define the enthalpy:

so that 

Applies when, eg., we 
heat the gas in a fixed 
volume. 



IRREVERSIBLE PROCESSES for GASES: ENTROPY

Compare the 2 processes, for the piston at right
(i) Gas slowly pushes piston out
(ii) Gas expands freely (massless frictionless piston)

The first is reversible, the 2nd is irreversible. WHY? 

To understand all this better, consider the 
“Gedankenexperiment” where a partition 
between 2 systems moves slowly & reversibly.
No heat passes between the two – but one gas 
can do work on the other.  Then

(a) Neither S nor U for the total
system change; so
& likewise for S. Hence

We will then define the 
temperature T so that

ie., 

(b) We now consider the change in energy 
when both S and V change. We have 

=

from the last slide, and from 

Thus we have
ENTROPY 
in terms of 
HEAT

dS =
= 0

so that is the 
same for any 2 systems in eqlbm.



THERMODYNAMIC POTENTIALS for GASES

Let’s define the quantities (related via Legendre transformations): 

With infinitesimals 
given by

With these we can define changes involving any pair of variables, viz., 
any of

We can then define changes 
in which some preferred 
variable is held constant. 
For example, starting from F
we have

&

An important such set of derivatives are 
the “specific heats” 



Σ

FREE ENERGY for GASES
To see how these thermodynamic potentials work, let’s look at the 
Helmholtz Free energy (usually just called the Free energy.
Suppose we first ignore temperature, and ask how the 
energy balances for 2 gases separated by a movable 
Partition. Moving the partition gives an energy change 

However, 

Thus at equilibrium we have:

Now suppose we have a system Σ in contact with 
a massive thermal bath E at temperature T (so Σ
must also be at temperature T). Consider the free 
energy F, defined as

Notice that

so that we get
We can also divide Σ into 2 partitions, & make the same argument as 

above, at constant T; we then get

(so that U is minimized)


(F is minimized)It is also useful to note that

E



Side Note: MAXWELL RELATIONS, etc.

When people actually use thermodynamics to treat macroscopic systems 
in equilibrium they often use various identities relating the differentials of 
state functions like F, G, U, etc. 

MAXWELL RELATIONS: Consider the 2 possible partial derivatives of F, 
obtained by holding one of the 2 free differentials constant, and allowing 
the other to vary. These are just  

(pressure) (entropy)

Now let’s differentiate each with respect to the other free variable, ie., 
consider

and

Now, if the free energy F is an analytic function of its variables, these 2 
quantities must be the same. Thus we establish that

Thus by measuring the latter (which is easy) 
we can find the former

There are more complicated relations (eg., the “triple product rule”, 
discussed on the notes. I will set some simple homework questions to 
help you get used to the Maxwell relations



THERMODYNAMICS – MORE GENERAL ANALYSIS
We now consider the more general case – ie., not tied to gases – where 
one has a set { xj } of all the relevant intensive variables, and a set { Yj } of 
their conjugate extensive variables, such that

Some examples:

We can then write down all the differential relations as for gases. Suppose,  
eg. the relevant variables are (T,S) and (M, B). We then have



MORE on these EXAMPLES

MECHANICAL CHANGES:  We’ve already seen the example of the mechanical 
work dW = -pdV done by an externally applied pressure on a 3-d gas. We can 

do the same thing for a 2-d surface, or for a 1-d wire, spring, or string. 

f
dLL

A dA

dW = fdL

dW = γ dA

Ω
L

dL

The same applies to 
changes in rotational 
motion & rotational energy

EM CHANGES:  electrical and magnetic changes involve energy associated 
with the EM field

NB: More generally one has tensorial 
relations for these mechanical quantities

p

U = E.p

and the same for magnetic systems; 
we will discuss this more later

NB: Again, more generally one has tensorial 
relations for these electromagnetic quantities



PARTICLE EXCHANGE & CHEMICAL POTENTIAL
One of the most important Thermodynamic potentials allows us to deal 
with a change in particle number N in the system – this is crucial in 
everything from chemistry to nuclear physics. 

Σ

Σ0

dN

We suppose a thermal bath Σ0 at temperature T to 
be in thermal equilibrium with a system Σ . Heat & 
energy can flow between the two, & also particles. 
If we want we can even allow the volume of the 
system Σ to change. Then we have:  

so that the chemical potential µ is the energy 
required to add a particle to Σ

We can then define 
the following 
thermodynamic 
potential differentials

Two derivatives are then very useful, in the experimental determination of 
the chemical potential:

(i) Free Energy F(T,V,N) (ii) Gibbs Free energy G(T,p,N)



PARTICLE EXCHANGE BETWEEN 2 SYSTEMS

Now we consider a situation where particle exchange 
occurs between 2 systems (but not with the bath). Thus 
both energy & particles can be exchanged between ΣA
& ΣB, & energy between all 3 systems. Everything is at 
temperature T.  We thus have

(constant) (constant)

Now, to find the equilibrium conditions, we note that and 
However, dU = 0 since the partition is not moveable.

We then have

from which it follows that when eqlbm is reached (so dN = 0) we have

However, we note that  µA = µB = µ

Eqlbm is reached by particle transfer. Suppose that µA > µB . Then a transfer 
dN from A to B gives 

However

so that

and F is minimized at eqlbm, when dF = 0
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