

Slow Stream

Fast Stream

Litre of Air

THERMODYNAMICS \& STATISTICAL MECHANICS

It's all about TIME SCALES.....

Lots of different Timescales....

Galaxies

Fire

Piece of Glass

Star

Piece of Wood

Bar Magnet

Si wafer

Bacterium

Block of Ice in Water

THERMODYNAMICS - a SUMMARY

A. EMPIRICAL APPROACH: Based on empirical observation

1. Assume the system is near "Thermodynamic Equilibrium" (we will define this later)

2. Identify the "Thermodynamic Variables" and "state functions"

Intensive quantities: these are variables such as temperature T, pressure p and density ρ. They are, by definition, independent of the system size.

Extensive quantities: these are variables such as mass M, internal energy U, volume V, magnetization M, and entropy S. They scale with the system size.

State Functions: these are functions of the thermodynamic variables which define the thermodynamic state of the system (eg energy U, free energy F, etc.).
B. DEDUCTIVE APPROACH: Based on a kind of axiomatic framework
$0^{\text {th }}$ Law of thermodynamics: If 2 systems are each in thermal equilibrium with a 3rd system, they are in thermal equilibrium with each other - and have the same temperature (definition).
$\mathbf{1}^{\text {st }}$ Law of thermodynamics: When energy passes between systems, then the total energy is conserved.
$2^{\text {nd }}$ Law of Thermodynamics: The sum of the entropies of interacting thermodynamic systems increases in time.
$3^{\text {rd }}$ Law of thermodynamics: The entropy of a system approaches a constant value as the temperature T approaches absolute zero.

SOME BASIC CONCEPTS in THERMODYNAMICS

Abstract

KEY THING TO REMEMBER: The structure \& many of the ideas you will find in thermodynamic theory depend to a large extent on the history of the subject - which began with a study of gases, later extended to more complex quasi-homogeneous systems. It is actually a miracle that these ideas can be applied to a much broader range of systems - BUT, often we have to be rather careful in realizing the limitations (or we need to generalize the ideas somewhat).

Absolute Temperature T: Defined so that its value represents the actual thermal energy in the system. The simplest way to do this is based on the pressure of a fixed volume of gas of very low density - then the ideal gas law is accurately obeyed, according to which

$$
p V=n R T
$$

where \boldsymbol{n} is the number of moles, and $\boldsymbol{R}=8300 \mathrm{~J} \mathrm{kmole}^{-1} \mathrm{~K}^{-1}$.
If 2 systems are each in thermal equilibrium, then, from the 0 -th law, they are also in mutual equilibrium if, when brought in thermal contact, there is no net heat transfer from one to the other. They then have the same temperature (by our previous definition of temperature as that quantity which equilibrium bodies have in common).

Reversible Processes: These are cyclical processes whereby a system is returned to its original state without any net heat transfer to the environment. (As already noted, this means that there is no change in total entropy S - to be defined below).

We learn a lot by looking at simple ideal gases. Consider the process where we move a piston in \& out, alternatively compressing and expanding the low-density gas inside. The state variables are the

(p, V) pressure p and volume V of the gas.

An infinitesimal change of volume gives, for a slow reversible process, a change δU in internal energy equal to the work δW done on the gas by the piston.

$$
\text { We then have } \delta W=-p d V \quad \text { so that } \quad W=-\int_{V 1}^{V 2} p d V \quad \text { (note the sign!) }
$$

However if the change is irreversible, heat can flow in or out of the system, or even be generated internally (particularly if the change is rapid). We then
 must account for this heat in the energy balance - we now have

$$
d U=\delta Q-p d V
$$

The total heat energy ΔQ involved is reflected in the path taken in the (p, V) plane - it is given by the enclosed area.

We can also define the enthalpy: $H \equiv U+p V$
so that $d H=d U+p d V+V d p: \quad \rightarrow \quad \delta Q+V d p$

Applies when, eg., we heat the gas in a fixed volume.

IRREVERSIBLE PROCESSES for GASES: ENTROPY

Compare the $\mathbf{2}$ processes, for the piston at right
(i) Gas slowly pushes piston out
(ii) Gas expands freely (massless frictionless piston)

The first is reversible, the $2^{\text {nd }}$ is irreversible. WHY?

To understand all this better, consider the "Gedankenexperiment" where a partition between 2 systems moves slowly \& reversibly. No heat passes between the two - but one gas can do work on the other. Then
(a) Neither S nor U for the total system change; so $\mathrm{dU}_{1}=-\mathrm{dU}_{2}$, \& likewise for S. Hence $\mathbf{d S}=\left(\mathrm{dS}_{1} / \mathrm{dU}_{1}\right) \mathrm{dU}_{1}+\left(\mathrm{dS}_{2} / \mathrm{dU}_{2}\right) \mathrm{dU}_{2}$ $\left[\left(\mathrm{dS}_{1} / \mathrm{dU}_{1}\right)-\left(\mathrm{dS}_{2} / \mathrm{dU}_{2}\right)\right] \mathrm{dU}=\mathbf{0}$
so that $\mathrm{dS}_{1} / \mathrm{dU}_{1}=\mathrm{dS}_{2} / \mathrm{dU}_{2}$.is the same for any 2 systems in eqlbm.

We will then define the $\begin{array}{ll}\text { temperature T so that } \\ \mathrm{dU}=\mathrm{T} \mathrm{dS} & \text { ie., } \quad T \equiv\left(\frac{\partial U}{\partial S}\right)_{V}\end{array}$
(b) We now consider the change in energy when both \boldsymbol{S} and \boldsymbol{V} change. We have

$$
d U=\left(\frac{\partial U}{\partial S}\right)_{V} d S+\left(\frac{\partial U}{\partial V}\right)_{S} d V=T d S-p d V
$$

from the last slide, and from $p=-\left(\frac{\partial U}{\partial V}\right)_{S}$

Thus we have

$$
d S=\frac{\delta Q}{T}
$$

ENTROPY in terms of
HEAT

THERMODYNAMIC POTENTIALS for GASES

Let's define the quantities (related via Legendre transformations):

$$
\begin{array}{ll}
\text { Internal energy: } & U \\
\text { Enthalpy: } & H=U+p V \\
\text { Helmholtz Free Energy: } & F=U-T S \\
\text { Gibbs Free Energy: } & G=U-T S+p V \\
\text { mals } & \\
\text { Internal energy: } & \mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V \\
\text { Enthalpy: } & \mathrm{d} H=T \mathrm{~d} S+V \mathrm{~d} p \\
\text { Helmholtz Free Energy: } & \mathrm{d} F=-S \mathrm{~d} T-p \mathrm{~d} V \\
\text { Gibbs Free Energy: } & \mathrm{d} G=-S \mathrm{~d} T+V \mathrm{~d} p
\end{array}
$$

With infinitesimals
given by

With these we can define changes involving any pair of variables, viz., any of

$$
(\mathrm{d} S, \mathrm{~d} V), \text { or }(\mathrm{d} S, \mathrm{~d} P), \text { or }(\mathrm{d} T, \mathrm{~d} V) \text {, or }(\mathrm{d} T, \mathrm{~d} P)
$$

We can then define changes in which some preferred variable is held constant. For example, starting from F we have

$$
p=-\left(\frac{\partial F}{d V}\right)_{T} \quad \boldsymbol{\&} \quad S=-\left(\frac{\partial F}{\partial T}\right)_{V}
$$

An important such set of derivatives are the "specific heats"

$$
\begin{aligned}
& d U=\delta Q-p d V \\
& C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=\left(\frac{\delta Q}{\partial T}\right)_{V}
\end{aligned}
$$

$$
\begin{aligned}
& d H=\delta Q+V d p \\
& C_{p}=\left(\frac{\partial H}{\partial T}\right)_{p}=\left(\frac{\delta Q}{\partial T}\right)_{p}
\end{aligned}
$$

FREE ENERGY for GASES

To see how these thermodynamic potentials work, let's look at the Helmholtz Free energy (usually just called the Free energy.
Suppose we first ignore temperature, and ask how the energy balances for $\mathbf{2}$ gases separated by a movable Partition. Moving the partition gives an energy change

$$
d U=-p_{1} d V_{1}-p_{2} d V_{2} \quad \text { However, } \quad d V_{1}=d V=-d V_{2}
$$

Thus at equilibrium we have: $d U=0 \quad$ (so that U is minimized)

Now suppose we have a system Σ in contact with a massive thermal bath E at temperature T (so Σ must also be at temperature T). Consider the free energy F , defined as $F=U-T S$

Notice that

$$
\mathrm{dF}=\mathrm{dU}-\mathrm{TdS}-\mathrm{SdT}=\mathrm{TdS}-\mathrm{pdV}-\mathrm{TdS}-\mathrm{SdT}
$$

so that we get $\mathrm{dF}=-\mathrm{SdT}-\mathrm{pdV}$
We can also divide Σ into 2 partitions, \& make the same argument as above, at constant T; we then get

$$
d F=d F_{1}+d F_{2}=-p_{1} d V_{1}-p_{2} d V_{2} \quad \rightarrow \quad d F=0
$$

It is also useful to note that
(F is minimized)

$$
U=F+T S=F-T\left(\frac{\partial F}{\partial T}\right)_{V}=-T^{2}\left(\frac{\partial(F / T)}{\partial T}\right)_{V}=\left(\frac{\partial(\beta F)}{\partial \beta}\right)_{V}
$$

Side Note: MAXWELL RELATIONS, etc.

When people actually use thermodynamics to treat mac roscopic systems in equilibrium they often use various identities relating the differentials of state functions like F, G, U, etc.

MAXWELL RELATIONS: Consider the 2 possible partial derivatives of F, obtained by holding one of the 2 free differentials constant, and allowing the other to vary. These are just

$$
p=-\left(\frac{\partial F}{d V}\right)_{T} \quad \text { (pressure) } \quad S=-\left(\frac{\partial F}{\partial T}\right)_{V} \quad \text { (entropy) }
$$

Now let's differentiate each with respect to the other free variable, ie., consider

$$
\left(\frac{\partial p}{\partial T}\right)_{V}=-\frac{\partial^{2} F}{\partial T \partial V} \quad \text { and } \quad\left(\frac{\partial S}{\partial V}\right)_{T}=-\frac{\partial^{2} F}{\partial V \partial T}
$$

Now, if the free energy F is an analytic function of its variables, these 2 quantities must be the same. Thus we establish that

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V} \quad \begin{aligned}
& \text { Thus by measuring the latter (which is easy) } \\
& \text { we can find the former }
\end{aligned}
$$

There are more complicated relations (eg., the "triple product rule", discussed on the notes. I will set some simple homework questions to help you get used to the Maxwell relations

THERMODYNAMICS - MORE GENERAL ANALYSIS

We now consider the more general case - ie., not tied to gases - where one has a set $\left\{\mathrm{X}_{\mathrm{j}}\right\}$ of all the relevant intensive variables, and a set $\left\{\mathrm{Y}_{\mathrm{j}}\right\}$ of their conjugate extensive variables, such that

$$
\mathrm{d} Q=\mathrm{d} U-\sum_{\mathrm{j}} x_{\mathrm{j}} Y_{\mathrm{j}}
$$

Some examples:

Work done by force
Volume change (pressure)
Length change (tension)
Areal change (surface tension)
Strain (stress)
Electric polarization (E field)
Magnetization (B field)
Particle number (chemical potential)
Rotation (angular momentum)
infinitesimal dW

$$
\begin{aligned}
\mathrm{dW} & =-\mathrm{pd} \mathrm{dV} \\
\mathrm{dW} & =\mathrm{fdL} \\
\mathrm{dW} & =\gamma \mathrm{dA} \\
\mathrm{dW} & =\sigma_{\mathrm{ij}} \mathrm{~d} \varepsilon^{\mathrm{ij}} \\
\mathrm{dW} & =\mathbf{E} \cdot \mathrm{d} \mathbf{p} \\
\mathrm{dW} & =\mathbf{B} \cdot \mathrm{d} \mathbf{M} \\
\mathrm{dW} & =\mu \mathrm{dN} \\
\mathrm{dW} & =\boldsymbol{\Omega} \cdot \mathrm{d} \mathbf{L}
\end{aligned}
$$

We can then write down all the differential relations as for gases. Suppose, eg. the relevant variables are (T, S) and (M, B). We then have

Internal energy:
Enthalpy:
Helmholtz Free Energy:
Gibbs Free Energy:

$$
\begin{aligned}
\mathrm{d} U & =T \mathrm{~d} S-\mathbf{B} \cdot \mathrm{d} \mathbf{M} \\
\mathrm{~d} H & =T \mathrm{~d} S+\mathbf{M} \cdot \mathrm{d} \mathbf{B} \\
\mathrm{~d} F & =-S \mathrm{~d} T-\mathbf{B} \cdot \mathrm{d} \mathbf{M} \\
\mathrm{~d} G & =-S \mathrm{~d} T+\mathbf{M} \cdot \mathrm{d} \mathbf{B}
\end{aligned}
$$

MORE on these EXAMPLES

MECHANICAL CHANGES: We've already seen the example of the mechanical work $d W=-p d V$ done by an externally applied pressure on a 3-d gas. We can do the same thing for a 2-d surface, or for a 1-d wire, spring, or string.

EM CHANGES: electrical and magnetic changes involve energy associated with the EM field

PARTICLE EXCHANGE \& CHEMICAL POTENTIAL

One of the most important Thermodynamic potentials allows us to deal with a change in particle number N in the system - this is crucial in everything from chemistry to nuclear physics.

We suppose a thermal bath Σ_{0} at temperature T to be in thermal equilibrium with a system Σ. Heat \& energy can flow between the two, $\&$ also particles. If we want we can even allow the volume of the system Σ to change. Then we have:

$$
d U=T d S-p d V+\mu d N
$$

so that the chemical potential μ is the energy required to add a particle to Σ

We can then define the following thermodynamic potential differentials

Internal energy:
Enthalpy:
Helmholtz Free Energy:
Gibbs Free Energy:

$$
\begin{aligned}
\mathrm{d} U & =T \mathrm{~d} S-p \mathrm{~d} V+\mu \mathrm{d} N \\
\mathrm{~d} H & =T \mathrm{~d} S+V \mathrm{~d} p+\mu \mathrm{d} N \\
\mathrm{~d} F & =-S \mathrm{~d} T-p \mathrm{~d} V+\mu \mathrm{d} N \\
\mathrm{~d} G & =-S \mathrm{~d} T+V \mathrm{~d} p+\mu \mathrm{d} N
\end{aligned}
$$

Two derivatives are then very useful, in the experimental determination of the chemical potential:
(i) Free Energy $F(T, V, N)$

$$
\mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}
$$

(ii) Gibbs Free energy $G(T, p, N)$

$$
\mu=\left(\frac{\partial G}{\partial N}\right)_{T, p}
$$

PARTICLE EXCHANGE BETWEEN 2 SYSTEMS

Now we consider a situation where particle exchange occurs between 2 systems (but not with the bath). Thus both energy \& particles can be exchanged between Σ_{A} \& Σ_{B}, \& energy between all 3 systems. Everything is at temperature T . We thus have

$$
U_{\text {tot }}=U_{0}+U_{a}+U_{b} \quad \text { (constant) } \quad N=N_{a}+N_{b} \quad \text { (constant) }
$$

Now, to find the equilibrium conditions, we note that $d N=-d N_{a}=d N_{b}$ and $d U=-d U_{a}=d U_{b}$: However, $d \boldsymbol{U}=\mathbf{0}$ since the partition is not moveable.

We then have

$$
d S_{t o t}=\left[\left(\frac{\partial S_{b}}{\partial N_{b}}\right)_{U}-\left(\frac{\partial S_{a}}{\partial N_{a}}\right)_{U}\right] d N+\left[\left(\frac{\partial S_{b}}{\partial U_{b}}\right)_{N}-\left(\frac{\partial S_{a}}{\partial U_{a}}\right)_{N}\right] d U=\left[\left(\frac{\partial S_{b}}{\partial N_{b}}\right)_{U}-\left(\frac{\partial S_{a}}{\partial N_{a}}\right)_{U}\right] d N
$$

from which it follows that when eqlbm is reached (so $d N=0$) we have
$\left(\frac{\partial S_{b}}{\partial N_{b}}\right)_{U}=\left(\frac{\partial S_{a}}{\partial N_{a}}\right)_{U} \quad$ However, we note that $\mu \equiv-T\left(\frac{\partial S}{\partial N}\right)_{U, V, \ldots} \rightarrow \mu_{\mathbf{A}}=\mu_{\mathbf{B}}=\mu$
Eqlbm is reached by particle transfer. Suppose that $\mu_{\mathrm{A}}>\mu_{\mathrm{B}}$. Then a transfer dN from \mathbf{A} to B gives

$$
d F=\left(\frac{\partial F_{a}}{\partial N_{a}}\right)_{T, V} d N_{a}+\left(\frac{\partial F_{b}}{\partial N_{b}}\right)_{T, V} d N_{b}
$$

$$
\text { However } d N_{b}=-d N_{a}=d N
$$

$$
\text { so that } \quad d F=\left(\mu_{b}-\mu_{a}\right) d N
$$

