
The PHOTON GAS
The absolutely crucial difference between (i) a gas of 4He atoms or, eg., massive 
mesons and (ii) a gas of photons is that, while all of these are bosons, the 
photons are massless (they have no rest mass, and their dispersion relation is  
ω = ck (with energy E = hω/ 2π). This leads to a really important result – we know 
from thermodynamics that 

or thator that
ie., no matter which variables 
we hold constant, µ measures 
the energy to add a particle

But a key fact about the photon gas 
is that in equilibrium with, eg., a set of 
atoms, the photon number is arbitrary; 
one can change the number of photons 
without  changing the total energy. 

Thus at equilibrium (where one of these thermodynamic potential is minimized), 
we have µ = 0, and N is completely undetermined. 
This is true even if for a set of photons inside a very large box:
the box itself is made of matter, & so photons can be created 
or destroyed at the walls. To decouple photons from matter 
we need a perfect vacuum (ie., intergalactic space). The 
photon number is then conserved – it can only change via 
photon-photon interactions, which require creation of a 
very high-energy e+e- pair, with exponentially small probability
(of order exp[-2mc2/kT] ).  Only then we can have non-zero µ



To discuss the thermodynamics of the photon gas we need to know (i) the 
density of states and (ii) the probability distribution function.  

DENSITY of STATES:  Let’s put photons in a 3d box with sides L. We assume 
no electric charge in the box, so that the classical electric field obeys

(empty vacuum) (wave equation)

Now let’s choose boundary conditions such that the components of E along the 
surface (tangential to the surface) go to zero at the surface SB, ie., we have

on this surface, for the electric field component Ek with wave 
vector k. Since for an EM wave in vacuum we also have                     (because

), we then have the standing wave solutions    

with

and

It is quite common in this business to also define the frequency in “cycles per 
second” (as opposed to Hz), and we will follow this, and write                   for the 
frequency in these units. 

We then get the total number of states up to a frequency ν as

so the density of states is



DISTRIBUTION FUNCTION FOR PHOTONS:   We can assume that this will be 
the Bose distribution for a set of particles with µ = 0, ie we have

(Bose distribution for massless photons)

This is also what we get by assuming that each photon is like an oscillator; then, 
as we have seen

so that, as we found previously, 

for each oscillator - which reminds us of acoustic phonons (as it should). It then 
follows that we can write the expectation value of the energy for each oscillator 
as

Now let’s go to the total photon gas, ie., the complete partition function. We 
find ln Ξ in the usual way, by summing over the logs of the partition functions for 
individual photons, & weighting with the density of states.   This then gives 
(multiplying by the system volume V): 

(for single oscillator 
with frequency ν)

and so we also get                                        (energy per photon mode)



PLANCK DISTRIBUTION

We can get the total energy by writing the energy per mode, and integrating over 
this, to get 

The energy density (E per unit volume) then has a contribution at frequency ν of

==

== (PLANCK DISTRIBUTION)

==

The total energy density of a photon gas at temperature T is then

This famous distribution is 
shown here in 2 different ways



PHOTONS in the UNIVERSE
In 1964 it was found that the universe was 
filled with photons at a temperature 
T ~ 2.728 K (from fits to the Planck curve); 
this is the “microwave background”. 

As the universe cooled and expanded after 
the Big Bang, a point was reached at which 
nucleons & electrons condensed out to form 
atoms - first for He and then H. The H
condensation happened fairly suddenly, 
360,000 yrs after the Big Bang. 

The universe then became transparent to 
photons, which could no longer scatter off 
charges. The “stretching” of spacetime since 
then has red-shifted and cooled the photons.

The radiation is not exactly uniform – it 
shows relative fluctuations in intensity 
~ 10-5, which correspond to different 
photon and matter densities at the 
moment of their decoupling. 

These fluctuations – measured with 
increasing accuracy in recent years –
give detailed info about the Big Bang.  
some that it substantiates the “inflation 
theory” (universe appeared by Q tunneling) 



MORE on  the PLANCK DISTRIBUTION

LIMITING FORMS:  The low and high-n limiting forms are interesting. Consider 
first the 19th century low-energy “Rayleigh-Jeans” form, viz.: 

BLACK-BODY RADIATION:  Radiation of the Planck form is often called 
“black body radiation”.  In fact, Planck, Kirchhoff, and Wien all came to their 

results by thermodynamic analysis, using “thought experiments”. 
We imagine a system which is a perfect absorber – any 
radiation impinging on it never comes out again. An example 
which tends to this behaviour as the size of the hole goes to 
zero is the “black box” at left. 

We define the emissivity er(ν, T) & absorptivity αr(ν,T) as
functions of frequency and temperature. For a black box the      
absorptivity is unity for all frequencies and temperatures.  

= 
Low 

frequency

~

This form is classical  - no factor of h appears in it, and it can be derived just 
by counting EM modes in a classical theory. However at high frequency it blows 
up, giving the famous 19th century “UV catastrophe”.  

The UV catastrophe was fixed by Planck, who introduced the idea of quantized 
energies to get the Planck distribution. From above, we see that the Planck form 
gives 


high 

frequency

(               )

(                )

This last form is the “Wien” form, also found long before QM was discovered. 



Consider 2 black boxes at 2 different temperatures 
T1 and T2. They can only be in mutual equilibrium if 
T1 = T2 = T.  By using filters at different frequencies, 
this equilibrium can only hold if the energy absorbed at 
any frequency by one box equals that emitted by the 
other at the same frequency.  Hence a perfect absorber 
is also a perfect emitter, for all frequencies, and indeed

T1 T2

er(ν, T) = αr(ν,T) (for all frequencies)

Now let’s consider the radiation emitted from the black box hole 
in the time interval dt, passing through a plane surface facing 
the hole. This first passes through a shell at distance r = ct 
from the hole. We assume a hole of unit area and a shell of unit 
radius. Then we can calculate Ju, the total radiative energy/sec 
passing through the shell, ie., Ju = dE/dt, as follows:  

We note that the energy density of the radiation in the box is just =

This energy is leaving through the hole at a velocity c cos θ towards the 
plane surface, so the total current is given by integrating this over the solid angle 
on the shell through which this radiation passes. This gives

==

= (since the solid angle is just dΩ = sinθ dθ dφ )

Hence we get = =

(Stefan-Boltzmann law)

ie.
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