
MICROSTATES and MACROSTATES

We start on the big job & big achievement of Statistical Mechanics – to 
link the behaviour of a macroscopic system to the probability of finding 
it in one or a group of microstates, & how the system through some or 
all of these microstates, over some period of time. In what follows we 
will do this for some simple systems, to get a feel for things.  

SOME SIMPLE SYSTEMS

(1) PARTICLES in a BOX:  We will describe these by Quantum Mechanics.
Let’s first look at the very simplest case – a single particle in a 1-d 

box, of length L. We then have the eigenstates shown at 
right, and we have

Eigenenergies: Non-relativistic 
limit v << c

where the Quantum Nos are: 

Relativistic 
regime v ~ c

Later on I will look at what we do when we have N particles in a box, and/or when our 
box is 2-d or 3-d. 

(2) HARMONIC OSCILLATORS:   Let’s pick a single 1-d oscillator; we then have 

Eigenenergies:

Quantum Nos:
where ν is the oscillator frequency



(2) QUANTUM ROTATOR:   Any system which is not spherically symmetric will have 
quantum numbers associated with its rotation – an example would be a diatomic 

molecule. We then have:
Eigenenergies:

Quantum Nos:

where and 
(Moment of inertia 
around c.o.m.)

(2) SPIN-S SYSTEM:  This is the simplest of all to analyze – there are only 2S+1 levels. 
Nowadays, if S = ½ , we also call this a “qubit” , or just a “TLS” (Two-Level System).  

Suppose the spin is in a field B along the z-axis. Then for 
a spin S we have 

Eigenenergies:

Quantum Nos:

where the quantum number m is just the projection Sz
along the z-axis. The spin has a magnetic moment µ, 
where  

The above systems are all simple because they have discrete spectra; 
this is because they are spatially confined. 



SET of N SPIN-1/2 QUBITS
We now have N spin-1/2 qubits. We assume no interactions between them, 
only interactions with the magnetic field. 

The Hamiltonian is

H =  -γh =  -(γh/2) Σi σi
z

where the sum Σi is over all spins, 
& ½σi

z = ½ ,-½ .  is the z-component 
of the i-th spin si, for a spin ½ . 

A single spin has 2 states,     &    , with magnetization Mz = µ, −µ, where here µ = γh/2.  

A pair of spins has 4 states, viz.,        (with Mz = 2µ),       &       (Mz = 0), &       (Mz = -2µ)
and so on. 

For N spins we count the states in the same way as we count coin tosses. 

We have Defining so that 

We can then say that the “macroscopic” states of the spin system are classified 
by the total magnetization            , ie., by the quantum number n
The total number of microscopic states for a given Q. Number n is then 

having probability =

Σi si
z

(assuming equal probability 
for each spin state)



Results for large N

Use Stirling’s approx.: 

Key variable:             (fractional deviation from mean)

We expand about the mean for large N, noting that

when

Then, recalling that 

we have

Hence

and

The quality of these approximations can be 
seen for N=10 and N=60 in the graphs

N=10

N=60
In a short Appendix to the notes I 
will discuss Stirling’s approximation



OTHER SIMILAR EXAMPLES

1-DIMENSIONAL RANDOM WALK:   A particle hops between sites on a 
1-dimensional line – the probability that it goes in one or other 

direction is the same, ie., 1/2. Then typical results are as shown:

Number of hops Number of hops 

The first graph shows a single trial run. The second shows a set of 5 different 
trail runs. Now, what we would like to know is – what is the probability of ending 
up at site n, after N hops? 
This problem is clearly isomorphic to the toin-cossing problem (right hop = heads; 
left hop = tails). Thus, we get

= 
Large N



BINARY ALLOY PROBLEM
Consider a problem where we mix up several species of atom & then let them 

form an ordered array. This is typical in the formation of alloys – at high T they 
will form a random arrangement. At low T they form an ordered lattice. 

Example: the BINARY system Cu:Zn   At low T, the Cu are at the centre of the 
cubic lattice sites, and the Zn at the corners. 

Let Ω1 be number of ways (multiplicity) of arranging the  f N Cu atoms on N regular Cu sites.
Let Ω2 be number of ways of arranging incorrectly positioned  (1-f)N  Cu atoms on N Zn sites.

Note that fN corresponds to the number of up spins in the spin ½ magnet and (1-f)N corresponds 
to the number of down spins. The difference n =  fN – (1-f)N = (2f-1)N = Nψ , where  ψ = 2f – 1. 

Define f ≡ fraction of correctly positioned Cu atoms on the N regular Cu sites. 

We then have


Large N

and the total multiplicity (ie., # of states) is 
then

We can also consider a system 
with 3 atomic species – you 
should verify 
we then 
get a 
trinomial 
distribution

(independent multiplicities multiply)



DENSITY of STATES FUNCTIONS

SINGLE PARTICLE DENSITY of STATES:  For a simple single system,  we write a 
function g(E) =  Σn δ(E – En) (“1-particle density of states”)

Example 1: spin 3/2 system – we have 4 
levels, separated by ∆E =  γhB; the 4 
levels are labelled by the values of Sz

½ -- 3/2  3/2 -½ 
E

g(E)
g(E)

E

Example 2: Quantum Oscillator. 
The levels have energies

and are also 
equally spaced

N-PARTICLE DENSITY of STATES:  For a composite system,  we now write
(“N-particle density of states”)

ie., this is the distribution of states for the N-particle system as a function 
of energy (here En

(N) refers to the N-particle energies)  

LEFT: The N-particle 
density of states for 
a set of 16 spin-1/2 
spins

RIGHT: The N-particle 
density of states for 
a set of N spin-1/2 
Spins, with N >> 1E



N-PARTICLE DENSITY OF STATES for N PARTICLES in a BOX

This is more complicated than for N spin-1/2
systems. There is a cute geometrical construction 
For the multiplicity of states for this case. 

2 Particles:   At right we show the allowed 
energies of a pair of 1-d Relativistic Particles 
(this simplifies the algebra, since the levels are 
equally spaced.

To find the multiplicity for a given energy we 
look at the green line in the figure, for which the 
total energy of the pair is Ep = pEo,  where Eo = hc/2L,
p = n1 + n2 , and L is the size of the 1-d box. 

We see that the multiplicity Ω2(p) = (p-1) for an energy Ep.
When Ep >> Eo, we have Ω2(p) ~ p. The density of states is 

(2 particles)

N (E)

E

(2 particles)

and it rises linearly with energy

N Particles:   We can now extend this construction to a 
set of N 1-d relativistic particles in a box. For this case the allowed states lie on 
(N-1) dimensional diagonal hyperplanes, and we get

This rises as a really high 
power of N for large N !

Notice the key difference in ΩN(E)
between systems with bounded & 
unbounded spectra – more later .. 



SOME GENERALITIES on the N-PARTICLE DENSITY of STATES
I’m now going to make a few statements about the N-particle density of 
states that I will not prove (we shall see later in the course how they 
come about). This is done to give you some feeling & intuition for what 
is going on – to be made rigorous later.

(1) the N-particle density of states has the general form

ln

so that ln N (E) is roughly proportional to the total entropy S of the system, 
written as a function of E = U – Eo , where Eo is the ground state energy (so 
that E is the total energy of the system, as measured from Eo).  

(2) The energies U (T ) and E (T ) are things we will find out for lots of 
systems in this course. Here is an example. We know that for many 
systems at low T one has E (T ) ~ ATn (examples: n = 2 for a Fermi gas or 
Fermi liquid, whereas n=4 for a solid or for a superfluid – all in 3 dimensions). 
Then, since at eqlbm we have dF = 0, & we get dS/dT = nAT n-2, so that we 
find

so that 

with Really fast 
increase with E!

Note that these results are 
for systems with energy 
unbounded above. For a set 
of N spins this is NOT the 
case!



MICROCANONICAL PROBABILITIES & ERGODIC HYPOTHESIS

What we have done so far is assign the SAME probability to each 
microstate.  This assignment we call the “microcanonical hypothesis”.
It is the assumption we make in, eg., card games and coin tosses.  If 
we extend it to an ensemble of macroscopically identical systems, 
this ensemble is called the “microcanonical ensemble”. 

However, if we discuss a single system, then we must also make an 
assumption about how quickly this system cycles between all the 
different states, & whether it visits each of them with equal probability.

The latter hypothesis – that all states are visited with equal probability 
over time – is called the ERGODIC HYPOTHESIS. 

In some cases this works reasonably well (eg., fairly well for dilute 
gases. But – there are an awful lot of states to visit! Even if, eg., the 
system is confined to a region of 
constant energy, how can it possibly 
visit them all in a reasonable time?

Studies of even quite simple 
systems shows that the “phase space” 
of states through which the system 
moves is sub-divided in very complex 
ways, and in many cases, states in one 
part are almost inaccessible from 
another part. 

Motion of a system through a part of 
phase space during a time period Texp



Again - It’s all about TIME SCALES…..

Star

Piece of Wood

Bar Magnet

Block of Ice in WaterBacterium

Fire

Piece of Glass

Si waferLitre of Air

Slow Stream

Fast Stream

Galaxies

Lots of different 
Timescales….

How close are we to Ergodic behaviour?



SUMMARY – WHAT DO WE KNOW, WHAT DON’T WE KNOW

Establishes relationships between 
macroscopic variables, from empirical info

Macroscopic quantities calculated from 
assumptions about microscopic constituents

4 basic laws or axioms–related to the 
macroscopic variables

Axioms of probability, & assumption of 
microstates for macroscopic systems, with 
assigned weighting for microstates. 

0 th law : If systems A and B are in 
equilibrium with C then A is in equilibrium 
with B. Assumes a definition of equilibrium

Equilibrium derived by maximization of 
probability for collections of microstates. 
Temperature defined statistically

1st law: heat and work are equivalent 
and total energy is conserved

Total Energy is conserved. 

2nd law: Entropy in an isolated system can 
only increase. Changes in entropy are well 
defined. Entropy defined in terms of heat.

Thermodynamics Statistical Mechanics

Entropy defined for a collection of microstates –
measures number of states. Systems evolve to  
most probable states (highest entropy)

3rd law: At absolute zero (T=0) the 
entropy approaches a constant value. 

At T=0, system is in ground state, entropy is zero 
(for unique ground state) or finite otherwise.

Only average quantities are calculated –to 
give macroscopic variables. Microscopic 
dynamics irrelevant. 

Fluctuations and correlations can be 
calculated. Dynamics, plus quantum statistics, 
play a key role. 



1. The number of discrete microstates is counted using simple rules.

2. In the microcanonical approach, equal probability is assigned to each 
microstate. 

3. We can classify the states by their different energies, and define a 
“density of states”, which tells how many states there are with a 
given energy – and energy is a macroscopic extensive variable

KEY POINTS to UNDERSTAND

E

N (E) N (E)

E

4. The N-particle density 
of states increases 
really fast with 
energy above the 
ground state. If the 
energy spectrum is 
bounded then N (E)
will come back down 
again at high E Unbound spectrum Bound spectrum

KEY THINGS TO COME
1. We will see that when we connect the system to an external bath, 

the probabilities are different for different microstates (higher for 
lower energy, and dependent on the number of particles). 

2. The probabilities & state counting will also depend on the quantum 
statistics (ie., on particle indistinguishability). 
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