
The GRAND CANONICAL ENSEMBLE
Now we go to the most general situation we will discuss, 
where both energy (including heat) AND particles can be 
exchanged with the bath. Our new conditions are then 

where N0 is the total # of particles in “system+bath”, 
and E0 the total energy.

Let’s clarify the notation here a bit. In the canonical ensemble, the number n of 
particles of the system was held constant – the eigenenergies εj of the system 
could then be labelled with the index j, without paying attention to n.
Now, however, we allow n to vary, so we label the different possible values of n 
by an index β (not to be confused with the inverse temperature). The particle   
number nβ then takes integer values, as does the number Nα of particles in the 
bath.  

It then becomes clear that in general, the allowed eigenenergies of the total 
“system + bath” must depend on all of these parameters, ie., we have allowed
energies

In what follows we simplify the notation as above, by suppressing the reference 
to the particle number dependence in the energy eigenstates. However, we notice 
that in doing sums over state for the central system we must now sum over both 
the indices j and β.   



Then, by the same arguments as before, the most probable state is one where 
the bath state has                             , ie., the bath has all the energy and all the 
particles. Again, however, to find the probability of the system being in some 
state where it has finite energy and a finite number of particles, we must expand 
away from this most probable state. We then get 

We now find a state multiplicity of form

where (central system energy) (central system number)

We then use and to get
Then, as before, we exponentiate to get 

with

In exactly the same way as for the canonical ensemble, we assume that the bath 
is very big compared to the central system – it then follows that

PROBABILITIES in the GRAND CANONICAL ENSEMBLE

and



CALCULATING with the GRAND CANONICAL PARTITION FUNCTION

The grand canonical partition function, viz.,                                                  is an 
obvious generalization of the canonical partition function (which we recall is 
given by                               ).    

All the usual stuff goes through – we have additivity of ln Ξ , and so on. The 
number n of particles is now a thermodynamic variable. We can write:
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where                     is the “activity”, and Zn is the canonical partition fn. for n
particles. Then
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Likewise the energy is

We can also calculate fluctuations. Thus, eg., we have 
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and                                     so that finally

MORAL: We do same 
manoeuvres as for the 
canonical ensemble



EXAMPLE 1.  ATMOSPHERIC DENSITY:   This is an old problem. We start by 
noting again that the chemical potential is a measure of the energy involved 

in adding a particle to the system. In what follows, to make things more 
transparent, we are going to use a hybrid argument, involving both the chemical 
potential and the canonical distribution. 
Consider a particle of mass m in the earth’s atmosphere. If we don’t go too high 
above the earth, we can approximate its gravitational energy in the earth’s field 
as

It then follows that the probability of finding it at height z, in the height interval 
of width dz, is just 

where the canonical partition function is just

Since the particle density is proportional to the probability of finding the particle 
at height z, we also have 

Now let’s bring in the chemical potential. It is physically obvious (and we shall 
prove it later) that the sum of the gravitational energy and the chemical potential 
must be the same for all z (otherwise we could have a “perpetuum mobile”). We 
then must have

so that

so that

This formula fails if we have really large z, since the 
gravitational potential energy is no longer linear in z. 



EXAMPLE 2.  PARTIALLY IONIZED GAS:   This is another old problem – relevant 
to both chemistry and to astrophysics. 

E = 0
n = 0

E = -I
n =  1

We have a toy model for an atom, in which the ground state 
is either occupied (with occupation n=1, and energy E = -I ) 
or it is unoccupied (ie., ionized), with occupation n=0 and 
energy E=0 . 
The grand canonical partition function for a single such 
system is then

where as before the activity is defined as

As discussed above, we can then immediately calculate the expectation value 
for the fraction of unionized atoms in an ensemble – it is just

===

Before going on, note that for any dilute gas of these atoms, at temperature T, 
we can argue that they are fairly independent of each other. If this is the case 
then we use the same arguments as for a canonical ensemble to find that for N 
such atoms:

It then follows that for such a gas, all extensive properties will be given by 
multiplying the single atom result by N.  Thus, the number of unionized atoms 
per unit volume is just ρ <n>, where ρ is the number density.

Note that our job is not yet finished here - this is because µ itself depends on 
temperature, and we have to find this dependence.  



To use the expression on the previous page, we need to know how the chemical 
potential of a dilute gas varies with temperature. This is given by (to be proven 

later):

where is the ‘quantum volume’ for a 
classical gas (here we assume 
each atom has spin S).  

Some Numbers:   At the surface of the sun we have                   (ie.,                     ),
and

To simplify, let S= 0; then

We then have =

Now let’s consider 2 different ionic species in the sun’s atmosphere. 

(ii) Hydrogen:  now we have

(i) Lithium:    we have 

so that (almost completely ionized)

which gives (very weakly ionized)

From this we see that the level of ionization of 
different species gives a fantastically sensitive 
measure of the physical state of the gas. 



These are spectra for different stellar types, whose surface temperature varies from 
roughly 40,000K (type O6) down to 3,00K (type M6). The sun is type G2.  



This graph plots ln I (λ)
vs λ, for stars of four 
different spectral 
types; here I (λ) is the 
intensity of radiation, 
and λ is the wavelength 
of the radiation. The 
most prominent 
absorption lines come 
from the “Balmer series’
In which H atoms, 
already excited to the
first excited level (n=2), 
are further excited to 
higher levels.  
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Details are as follows:

B0:  T ~ 34,000 K. The lines are weak because the density of H atoms in the n=2
state is very low - almost all H atoms are already excited to higher levels.

A0:  T ~ 9,800 K. Strong Balmer absorption lines – most H atoms in the n=2 state.

F0:  T ~ 7,600 K. Balmer lines weaker – most atoms now in ground state (n=1). 

G0:  T ~ 6,400 K.  Balmer lines v. weak – almost all H atoms in ground state.  

Intensity increases extremely fast as temp. T goes up (Stefan-Boltzmann law); the 
peak intensity shifts to lower λ (higher frequency) as T goes up (Planck distribution) 
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