
BASIC RESULTS on PROBABILITY

Here we give results on probability that will be useful for Statistical Mechanics. Essentially
this means we start from the theory for discrete events; this means that we will first need to recall
basic facts about combinatorics (facts which are useful throughout physics). Later we go to results
on correlations, on continuous variables, and so on. It is assumed here that everyone has already
taken a course on probability - this document is largely intended to refresh your memory.

1. Permutations, Combinatorics, and Discrete Probabilities

We are interested in the theory of probability for a finite set of possible discrete
outcomes. In physics this includes much of quantum mechanics, at lest where a
finite discrete set of states are involved; in statistical mechanics it involves the set of
microstates for any quantum system. In more general areas of inquiry it can involve
a huge range of activities and processes. Thus, the theory includes the calculation
of the probability of any physical process which involves a finite set of outcomes.
Well-known tutorial examples of this come from the calculation of probabilities for,
eg., a possible outcome of a card game or indeed any game involving a finite set of
possible states for the game.

One begins by considering the way in whichN objects can be permuted amongst
each other, ie., in how many different ways these N objects may be arranged (eg.,
on a line). There are two obvious cases here, viz.,

(i) The objects are all different or ’distinguishable’ from each other. The number
of different permutations is then simple to deduce. The object in the first position
on the line may be chosen in N different ways, that in the second position in N −1
ways, and so on. The number of possible arrangements is therefore N(N − 1)(N −
2)(1) = N !

(ii) Alternatively, the objects are all indistinguishable. But then all the different
permutations just given are identical - so there is only one way of arranging N

indistinguishable objects on a line.

Multinomial Combinatorics: Suppose we now consider N objects of which we
have n1 of type 1, which are identical to each other, n2 identical objects of type 2,
etc., etc., up to nm identical objects of type m (so that

∑
j nj = N ). As we have

seen, if all the N objects were distinguishable, the number of their permutations
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would be N !. However, the number of distinguishable permutations is only

CN
{nj} ≡ CN

n1,n2,..nm
=

N !

n1!n2!....nm!
(1)

since the j-th group of identical objects can be rearranged in nj! ways without
changing anything, and we can do this for any of the m different sub-groups. The
simplest example of a multinomial distribution is of course the binomial distribu-
tion, viz.,

CN
n =

N !

n!(N − n)!
(2)

The reason that these coefficients are given the name ‘multinomial’ coefficients
is because they are just the coefficients in the ‘multinomial’ expansion of the the
expression (z1 + z2 + · · · + zm)

N , given by

 m∑
k=1

zk

N

=
∑
n1

∑
n2

· · ·
∑
nm

δ(N −
∑
k

nk)

(
N !

n1!n2!nm!

)
zn1
1 zn2

2 · · · znm
m (3)

Here the Kronecker delta function δ(N − ∑
k nk) enforces the constraint that∑

k nk = N (thus, eg., in our example above, the sum of the number of rocks in all
the different piles must be equal to N).

Now there are various intuitive ways to think of these coefficients. Here are
two:

(i) Imagine we have N identical balls which we distribute in m different cells or
boxes. What then is the total number of different ways that this can be done, with
n1 balls in the 1st cell, n2 in the 2nd, and so on. The answer is the multinomial
distribution in (1).

(ii) Suppose I have n1 balls of 1 colour (all then indistinguishable from each
other), n2 balls of another, and so on up to the m-th colour. How many different
distinguishable ways can we then order the N balls? The answer is again the
multinomial distribution in (1).

There are clearly many different variants on these. Thus, eg., suppose we
have N distinguishable rocks which we divide into m piles, such that we have nk

objects in the k-th pile, with k = i = 1, 2, ...,m. Suppose also that the ordering
of rocks in each pile is irrelevant - they are just piles. Then it is clear that the
multinomial coefficient gives the number of ways in which we can divide the different
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distinguishable objects into these piles. To see this explicitly, let us imagine we start
by picking the n1 rocks for the first pile; we can clearly do this in CN

n1
ways. The

n2 rocks in the second pile can then be picked from the (N − n1) remaining ones
in CN−n1

n2
ways; and so on until we get to the 2nd last pile, ie., the (m− 1)-th pile,

and this can be done in C
N−n1− ···−nm−2

Nm−1
ways. The remaining rocks, which make up

the last pile, can only be found in one single way.
Multiplying all these together, we find that the total number of ways of dividing

the original N rocks into m piles is given by

N = CN
n1
CN−n1

n2
...C

N−n1− ···−nm−2

Nm−1
=

N !

n1!n2!....nm!
(4)

Here the last result is obtained by just multiplying out all the terms, and noting
how the numerator in one such term is cancelled by a factor in the denominator of
the previous term.

One can of course think of many other ways to count different orderings that
involve these coefficients.

Discrete Probabilities: Now let us use these results for counting permutations
to calculate probabilities for discrete outcomes (ie., where there is a finite number
of possible outcomes for discrete events).

(a) In the first kind of problem we will consider, all of the different possible
outcomes are assumed to be a priori equally probable. Usually it is physically
obvious for real systems when this should be the case, in that there is nothing
whatsoever that gives an y reason to suppose that one outcome is more likely than
any other. A good example is the toss of a perfect coin, where by assumption
the probability of getting heads (H) or tails (T) is equal (and therefore each has
probability 1/2). In this case there are 4 possible outcomes if we toss two such
coins, or if we toss the same coin twice, these being HH, HT, TH, and TT. Clearly
each of these is equally likely, and so their probabilities are 1/4 each.

It is then clear that if we want to calculate the probability of one specific
outcome when the total number of possible outcomes is Q, that probability must
be 1/Q. On the other hand, if we want to find the probability that we will get an
outcome which itself involves a set of S different discrete outcomes (this set being
a subset of all possible outcomes), then that probability will be S/Q.

This is where all the counting exercises we have done above come in handy. To
see this, consider the probability that we will get n heads if we throw a perfect coin
N times. The ordering is irrelevant, so that the total number of ways of throwing
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n heads is just CN
n , as we have already seen. However the total number of possible

throws is clearly 2N ; and so it follows that the probability PN(n) of getting n heads
is just given by

PN(n) =
CN

n

2N
=

1

2N

 N !

n!(N − n)!

 (5)

When N, n ≫ 1 we can easily find accurate expressions for this using Stirling’s
asymptotic formula.

(b) Now suppose that the probabilities for the different outcomes are not the
same. At this poit we must assign probabilities depending on what knowledge we
have of the system involved. Suppose, eg., that for the coin discussed above, we
know that the probability of getting heads is p+, so that the probability of getting
tails is p− = (1 − p+). We count things in the same way, but now we have to
assign the correct probability to each outcome. It should be immediately obvious
that the new result for PN(n) is now

PN(n) = CN
n pn+p

N−n)
− ≡

 N !

n!(N − n)!

 pn+(1− p+)
(N−n) (6)

because the probability of getting any one of the combinations with n heads and
N − n tails is, by assumption, just pn+p

N−n)
− . When p+ = 1/2, this just reduces to

the previous result.

It should now be obvious how to generalize this to cases where we have more
than two different types of object involved in our outcomes, ie., where we deal
with multinomial combinatorics. Thus, suppose we have N identical balls which
we distribute in m different cells or boxes, but now the probability of going into the
k-th box is pk, where k = 1, 2, · · · m (and where of course

∑
k pk = 1). As we saw

before, the number of different ways of doing this is just the multinomial coefficient
CN

n1,n2,..nm
; but now the weighting attached to any one of these ways is

∏
k(pk)

nk. It
then follows that the probability PN(n1, n2, · · ·nm) of getting an outcome in which
there are nk balls in the k-th box is just

PN(n1, n2, · · ·nm) = CN
n1,n2,..nm

m∏
k=1

pnk
k

= δ(N −
∑
k

nk)

(
N !

n1!n2!nm!

)
pn1
1 pn2

2 · · · pnm
m (7)

Again, we include the Kronecker delta constraint, as before. Note that if we now
sum over all possible outcomes here (which means summing over all the different
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values of the nk within the constraint that
∑

k nk = N), then we just get back the
formula (3) above, with pk substituted for zk. Note that the left hand side of (3)
then becomes unity, because

∑
k pk = 1, and this is of course what we would expect

- the sum of the probabilities of all different outcomes exhausts all possibilities,
and so it must be unity.

Let’s consider some examples of what we are talking about here, to give you
an idea. I will, for simplicity, look here at cases where the probabilities of each
outcome are all the same.

example 1: Suppose I draw 7 cards from a 52-card pack of cards. What is the
probability that this hand of cards contains 3 Aces?

To do this we need to first ask how many possible outcomes there are for
the 7 cards that are dealt; we then ask how many of these give 3 Aces. The
probability is then the latter number divided by the former. The first question is
simple - the total number of possible distinguishable arrangements is the binomial
C52

7 ≡ C52
45 = 52!/7! 45!, because we can re-order the first 7 cards 7! times, and the

last 45 cards 45! times.
To deal with the 2nd question we note first that it does not matter which Aces

we get. We need to multiply the number of ways of getting 3 of the 4 Aces (without
caring which ones), by the total number of outcomes for the other 4 cards that are
dealt, with the constraint that these are NOT Aces. The first number is C4

3 = 4.
To find the second number, we note that there are 48 cards that are not Aces, and
we are getting 4 of these. So this latter number is C48

4 = 48!/44! 4!.

The final result for the probability P
{7}
AAA is then

P
{7}
AAA =

C4
3C

48
4

C52
7

= 4× 48!

4! 44!
× 7! 45!

52!
= 7.6.5.4

45

52.51.50.49
(8)

which if we work it out gives P
{7}
AAA ∼ 0.00582, ie., roughly a probability of 1/172.

Example 2: In a game of poker, each of four players is dealt 5 cards from a
pack of 52 cards. What is the probability that each player is dealt an ace?

A: This is a generalization of the last problem to a multinomial distribution.
We must first ask how many possible outcomes there are for the 4 batches of 5
cards that are dealt; we then ask how many of these give 1 Ace in each hand. The
probability is then the latter number divided by the former.

The answer to the first question is given by the multinomial distribution - we
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have C52
5.5.5.5.32 ≡ 52!/(5!)432! ways of distributing the cards amongst 4 hands of 5

cards, and amongst the remaining 32 cards.
To deal with the second question we note first that the ordering of the Aces

between the hands is irrelevant - there are 4! different ways of ordering the 4 Aces.
There are then 48 cards left, that are not Aces - these can be dealt out to the 4
different hands in a total of C48

4.4.4.4.32 ≡ 48!/(4!)432! times.

The final result for the probability P
{4×5}
4A is then given by

P
{4×5}
4A =

4!× C48
4.4.4.4.32

C52
5.5.5.5.32

=
54 × 24

52.51.50.49
(9)

which, if we work it out, just gives P
{4×5}
4A ∼ 2.31×10−3, ie., a probability ∼ 1/433.

Example 3: There is a British game called snooker, one of a large variety of
different games of billiards. In this game, one has a white, a yellow, a green, a
brown, a blue, a pink, a black and 15 red balls (for a total of 22 balls). So - how
many different permutations can one make of these (ie., how many different distin-
guishable ways can one order them, assuming all the reds are INdistinguishable
from each other)? And, if we pull balls out at random, what is the probability that
the first 15 of these will be red?

A. We are clearly dealing with the multinomial distribution here, with the result
that we have

22!

(1!)715!
(10)

different distinguishable permutations. You can easily do the second part of this
question yourself.
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