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March 23, 2021

Problem 1. Early Universe

At the ‘recombination time’ τR (roughly 400,000 years after the Big Bang), the main constituents of the
universe were photons, hydrogen atoms, protons, and electrons. For this problem, we sall ignore the photons
and assume that the three remaining species have chemical potentials µH, µp, and µe and number densities
nH, np, and ne respectively. Assume a Hydgron ionization energy E0. Furthermore, assume that there are
two relevant states for the proton and electron (being that they are spin-1/2) and therefore four states for
the hydrogen atom.

(a) Suppose that we can treat this system as low density. What are nH, np, and ne in terms of µH, µp,
and µe?

Solution: Because the gases are at low density, we can consider them to be non-interacting particles, and
treat the ionization and formation of hydrogen to be the particles entering and leaving the system. We
also assume that on a sufficiently large scale, the universe is homogeneous. Thus, we can consider some
fixed volume V , and let na be the number density of the species a in that volume.

We recognize that we can analyze the system using the grand canonical ensemble. Furthermore, because
the particles are non-interacting, the partition function ZG is given by:

ZG =
∑
NH

∑
Ne

∑
Np

(z(H)

G )
NH (z(e)

G )
Ne (z(p)

G )
Np

where z(a)

G is the single particle partition function for species a. Notice that the single particle partition
function is:

z(a)

G =
∑

states s

e−β(Es−µa) = z
(a)
C eβµa

for µa being the chemical potential of species and a and where zC is the canonical single particle partition
function for species (a). Because we are neglecting any electromagnetic interactions, the only energy
contribution to the electron and proton energy will be the kinetic energy. As such, each distinct spin state
is described by the free particle partition function in three dimensions, which we know (from Equation
6.26 in the course notes):

z
(p)
G = 2V

(
mp

2πβℏ2

)3/2

z
(e)
G = 2V

(
me

2πβℏ2

)3/2
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The hydrogen atom also has no energy from interactions, but each energy level is shifted by the ionization
energy −E0. Thus, the single particle partition function will be:

z(H)

G = 4V

(
mH

2πβℏ2

)3/2

eβE0

Note: This shift in the energy can be seen by considering a hydrogen atom at rest. By adding energy
E0 to the atom, the electron and proton can be separated, giving a proton at rest and an electron at rest.
The final system has no energy, so by conservation of energy, the hydrogen atom at rest must have en-
ergy −E0. This shifts the minimum value of the Maxwell-Boltzmann distribution, and evaluating the
resulting integral causes an additional factor of eβE0 to appear in the partition function. Alternatively,
we could neglect the energy shift E0 in the single particle partition function and treat the ionization en-
ergy as a correction to the chemical potential. In this case, the ionization energy will not appear in this
expression, and will instead appear in the problem in the equilibrium expression in part b.

Substituting our expressions for the single particle partition functions into our equation for ZG, we find
that:

ZG =
∑

NH ,Ne,Np

2Np+Ne+2NHV Np+Ne+NH

(
mp

2πβℏ2

)3Np/2( me

2πβℏ2

)3Ne/2( mH

2πβℏ2

)3NH/2

eβNH(µH+E0)eβNeµeeβNpµp

We recognize that this series is the product of geometric series in powers of NH, Ne, and Np. Then, using
the geometric series formula, we can write:

ZG =

(
1

1− 2V ρHeβ(E0+µh)

)(
1

1− 2V ρeeβµe

)(
1

1− 4V ρpeβµp

)
where we have defined ρa for the species a to be:

ρa =

(
ma

2πβℏ2

)3/2

Next, we know that the particle density na for species a is given by:

na =
1

βV ZG

∂ZG

∂µa

Using our expression for ZG in conjunction with our expression for na, we find:

np =
2ρpe

βµp

1− 2V ρpeβµp
ne =

2ρee
βµe

1− 2V ρeeβµe
nH =

4ρHe
β(µH+E0)

1− 4V ρHeβ(µH+E0)

For each of the species, the quantity V ρae
βµa is much smaller than 1, so each denominator in the above

expressions is approximately equal to 1. Then, rewriting each of the ρa in terms of fundamental constants,
we have the expressions:

np = 2

(
mp

2πβℏ2

)3/2

eβµp ne = 2

(
me

2πβℏ2

)3/2

eβµe nH = 4

(
mH

2πβℏ2

)3/2

eβ(µH+E0)

2



(b) What defines thermal equilibrium for this system? At equilibrium, what are nH, ne, and np?

Solution: At equilibrium for the system, the rate at which each species enters the system is the same
as the rate at which the species leaves the system, which requires that the chemical potentials for the
electron and proton The energy required to remove a hydrogen atom from the system is µH. The energies
required to remove an electron and a proton from the system are µe and µp respectively. Thus, we have
the constraint:

µH = µe + µp

Next, using our expressions from the previous part, we see that:

nenp

nH

=

(
mpme

2πβℏ2mH

)3/2

eβ(µe+µp−µH−E0)

Using our equilibrium condition, we see that this simplifes to the following result:

nenp

nH

=

(
mpme

2πβℏ2mH

)3/2

e−βE0

(c) Using values for E0 and for the mass me of an electron that can be found in the literature, find the
density ne when nH = np = ne (that is, when half of the hydrogen atoms are ionized). This is the density
at the recombination time τR.

Solution: When ne = np = nH, our expression from the previous part becomes:

ne =

(
mpme

2πβℏ2mH

)3/2

e−βE0 =

(
mpme

2πβℏ2(mp +me − E0)

)3/2

e−βE0

Expanding the denominator to leading order about me − E0 ≈ 0, we find:

ne ≈
(

mpme

2πβℏ2mp

(1 + E0 −me)

)3/2

e−βE0 ≈
(

me

2πβℏ2

)3/2

e−βE0

where we have dropped all terms that are higher than first order in products of me and E0. The ground
state ionization energy for the hydrogen atom (which is a very useful number to have memorized) is
E0 = 13.6 eV, the mass of the electron is 0.511 MeV/c2, and the the recombination temperature is 3740
K. Substituting these values into our previous expression, we find:

ne =

(
(0.511× 106 eV)(8.62× 10−5 eV/K)(3740 K)

2π(6.58× 10−16 eV · s)2(3.0× 108 m/s)2

)3/2

e−(13.6 eV)/(8.62×10−5 eV/K)(3740 K)

Evaluating this result, we find that the electron number density is:

ne = 2.64× 108 m−3
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Problem 2. Bose Gases

(a) Draw two graphs as a function of the energy E which shows the one-particle density of states, and the
Bose distribution function for a three-dimensional Bose-System of massive particles with mass m for the
cases T > Tc and T < Tc, where Tc is the BEC condensation temperature. Then, draw two graphs showing
the product of these two functions, as a function of energy in each of the two temperature cases.

Solution: We consider the Bose gas as a homogeneous gas and restrict our attention to a box with unit
volume. We know (from Equation 4.58) that the single particle density of states g(E) is:

g(E) =

√
E

4π2

(
2m

ℏ2

)3/2

Notice that this expression is neither explicitly nor implictly (through the chemical potential) dependent
on the temperature of the ensemble, so the density of states above and below the critical temperature will
be the same. A plot of the degeneracy of states with dimensions chosen such that g(E) =

√
E is shown

below:

Next, a Boson gas obeys the Bose distribution f(E), which we know (from Equation 7.18) is given by

f(E) =
1

eβ(E−µ) − 1

where µ is the chemical potential of the gas. For T > Tc, the chemical potential is negative, and the
distribution has a finite value at E = 0. For T < Tc, the chemical potential vanishes and the distribution
diverges at E = 0. The plots of these two cases with dimensions chosen such that β = 1 and such that
µ = 1 for T > Tc are shown below:
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Finally, the number of particles n(E) with an energy E is given by the product of the density of states
and the Bose distribution. Thus:

n(E) =
1

4π2

(
2m

ℏ2

)3/2
√
E

eβ(E−µ) − 1

Once more, for T > Tc, the chemical potential is negative. For T < Tc, the chemical potential vanishes.
Below, we see plots of n for T above and below Tc with the dimensional scalings used in the previous plots:

(b) A criterion for a BEC to occur in a three dimensional gas of bosons is that the chemical potential
µ = 0. Explain this criterion with reference to the relevant mathematical expressions.

Solution: Physically, we can understand the chemical potential µ as being the negative of the energetic
cost required to add a particle to the system. Thus, when µ < 0, it is energetically unfavorable to add
particles to the system, and we cannot add infinitely many particles to the system. However, when we
have µ = 0, there is no energetic cost to add particles to the zero-energy ground state and only to this
ground state. Thus, some arbitrarily large number of particles must be in the ground state, leading to a
condensate. We shall now mathematically verify this physical intuition.

5



The total number of particles N in the system is given by integrating the number of particles with an
energy E over all energies along with the number of particles N0 in the ground state. That is:

N = N0 +

∫ ∞

0

dE n(E)

The ground state is the zero energy state with zero momentum, which has degeneracy 1. Thus, N0 is
just the value of the Bose distribution at E = 0. Using this along with our expression for n(E) from the
previous part, we find:

N =
1

e−βµ − 1
+

1

4π2

(
2m

ℏ2

)3/2 ∫ ∞

0

dE

√
E

eβ(E−µ) − 1

Using the geometric series formula, we can write the denominator of the integrand as a series in the
following way:

N =
1

e−βµ − 1
+

1

4π2

(
2m

ℏ2

)3/2 ∞∑
k=1

∫ ∞

0

dE
√
Eekβ(µ−E)

We can now use the substitution u = kβE to rewrite this integral as:

N =
1

e−βµ − 1
+

1

4π2

(
2m

ℏ2

)3/2 ∞∑
k=1

ekβµ

(kβ)3/2

∫ ∞

0

du
√
ue−u

We recognize that the integral is a definition for the Γ-function evaluated at 3/2, which is equal to
√
π/2.

We also recognize that the series is the definition of the polylog function Li 3
2
. Then, we can rewrite this

expression as:

N =
1

e−βµ − 1
+

1

2

(
m

ℏ2βπ

)3/2

Li 3
2
(eβµ)

We know that the chemical potential µ cannot be positive, so eβµ is restricted to the interval (0, 1]. The
polylogarithim function is bounded on this interval, so only finitely many particles can be added to the
excited states of the system at any finite temperatures. Thus, all particles added to the system above this
bound must be added to the ground state, and we have the constraint that for a BEC to form:

N0 =
1

e−βµ − 1

must diverge. This occurs precisely when µ = 0, verifying our constraint. □

(c) Rederive the criterion for two-dimensional and one-dimensional systems. What do the results tell you
about BECs in these cases?

Solution: We know (from Equation 4.54) that the density of states g1(E) in one dimension is given by:

g1(E) =
1

πℏ

√
m

2E

Multiplying by the Bose-Einstein distribution gives us n1(E), the number of particles at an energy E is:

n1(E) =
1

πℏ

√
m

2E

1

eβ(E−µ)−1
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The total number of particles N1 is given by the integral of n1 over all N along with the number of particles
N0 in the ground state. We know that N0 is just the Bose distribution at E = 0. Then:

N1 =
1

e−βµ − 1
+

1

πℏ

√
m

2

∫ ∞

0

dE
1√
E

1

eβ(E−µ) − 1

As we did in the previous part, we write the integrand as an infinite geometric series then use the substi-
tution u = βkE to rewrite the integral as:

N1 =
1

e−βµ − 1
+

1

πℏ

√
m

2β

∞∑
k=1

ekβu√
k

∫ ∞

0

du u−1/2e−u

The integral is the definition of the Γ-function evaluated at 1/2, which is
√
π. Furthermore, we see that

the series is the definition of the polylog function Li 1
2
. Then, we can rewrite the previous expression as:

N1 =
1

e−βµ − 1
+

√
mπ

2βℏ2
Li 1

2
(eβµ)

In order to have N1 diverge, one of these terms must diverge. We have seen in the previous parta that
the first term diverges precisely as µ approaches 0. The polylog function of order 1/2 diverges to in-
finity when approaching from below 1, which tells us that Li 1

2
(eβµ) diverges to infinity as µ approaches

0 from below. Thus, our contraint for N1 to be arbitrarily large is that µ = 0. Then, we see that both
the ground state occupation and excited state occupations diverge together, and there is therefore no BEC.

We shall now repeat the calculation in two dimensions. We know (from Equation 4.57) that the density
of states g2(E) in two dimensions is given by:

g2(E) =
m

2πℏ2

Following the procedure we performed in one dimension, the number of particles N2 in the system is given
by:

N2 =
1

e−βµ − 1
+

m

2πℏ2

∫ ∞

0

dE

eβ(E−µ) − 1
=

1

e−βµ − 1
+

m

2πℏ2β

∞∑
k=1

ekβµ

k

∫ ∞

0

du e−u

The integral evaluates to 1, and we recognize that the series is the Taylor expansion of the logarithm
function. Then, we can write:

N2 =
1

e−βµ − 1
− m

2πℏ2β
log

(
1− eβµ

)
Once again, both terms diverge precisely at µ = 0. However, because both the ground state occupation
and excited state occupation diverge together, there cannot be a BEC. □

(d) Consider a photon gas. Why is µ = 0 always true for photons? Derive an expression for the energy
density U(T ) for a photon gas in n-dimensions for n being some positive integer. Show that U(T ) ∝ T n+1.

For a system of non-interacting massless bosons, such as a photon gas, the energy of the system has no
dependence on the number of particles, only on the sums of the momenta of the particles. For example,
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a system of two photons with momenta ℏk1 and ℏk2 respectively has the same energy as a single photon
with momentum ℏ(k1 + k2). There is subsequently no energy cost to adding particles into the system, so
we must have the chemical potential µ = 0. Then, the Bose distribution fγ for photons becomes:

fγ(E) =
1

eβE − 1

We shall now determine the density of states gγ for a gas in n-dimensions. We consider a gas constrained

to a n-dimensional box with side length L. We have the condition that k⃗ must vanish at the boundary of
the box. Then, each component kj of the wave-vector must satisfy:

kj =
mjπ

L

for positive integers mj. This tells us that each allowed wave-vector component must be separated by a
minimum of π/L, so each allowed wave-vector occupies an n-dimensional volume (π/L)n in k-space. The
number of states G with energy less than E is given by:

G(E) =
1

2n

∫ k(E)

0

dnk⃗

where we divide by 2n to account for the fact that the wave-vector modes are equivalent under sign changes
in the components, so we only need to consider the modes where all components are positive. Writing this
in n-spherical coordinates, we have:

G(E) =
1

2n

∫ k(E)

0

dk dΩn−1 kn−1

where dΩn−1 is the solid angle of the n− 1-sphere. The integrand is spherically symmetric, so the integral
over the solid angle yields the volume of the unit n− 1 sphere. Then, we can write:

G(E) =
2πn/2

2nΓ(n/2)

∫ k(E)

0

dk kn−1

Note: The unit n − 1 sphere is an n − 1-dimensional surface, so its volume is the surface area of the
unit n − 1 ball. Checking the prefactor above for n = 2 and n = 3 yields the familiar results of 2π (the
1-dimensional “volume” of the circumference of the unit circle) and 4π (the 2-dimensional “volume” of
the surface area of a sphere).

Next, we know that the energy E of a photon with wave-vector k⃗ is given by the relativistic equation:

E = ℏck

Then, we can rewrite our integral expression for G(E) as:

G(E) =
2πn/2

Γ(n/2)

∫ E

0

dE ′ (E
′)n−1

(2ℏc)n
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The degeneracy of states gγ(E) is defined to be the number of states in the system between E and E+dE.
We recognize that this is the infinitesimal increase dG over an increase dE, or:

gγ(E) =
dG

dE
=

2πn/2

Γ(n/2)

En−1

(2ℏc)n

The energy density U of the system is given by integrating the product of the energy and the number
of particles at that energy level over all energies. The number of particles at a given energy level is the
product of the degeneracy af states gγ with the distribution fγ. Then:

U =
2πn/2

Γ(n/2)(2ℏc)n

∫ ∞

0

dE
En

eβE − 1

As we did in the previous parts, we can write the denominator of the integrand as a geometric series and
use the substitution u = βE, which yields:

U =
2πn/2

Γ(n/2)(2ℏc)n
∞∑
k=1

1

kβn+1

∫ ∞

0

du une−u

Once more writing the integral as a Γ-function and the series as a polylog Lin+1, we have:

U =
2πn/2Γ(n+ 1)Lin+1(1)

Γ(n/2)(2ℏc)nβn+1

Rewriting this expression in terms of the temperature T , we find:

U =
2πn/2Γ(n+ 1)Lin+1(1)(kBT )

n+1

Γ(n/2)(2ℏc)n

Problem 3. Superfluids

(a) Consider mass m moving through a fluid with constant viscousity coefficient η. Find the equation
of motion of the particle, assuming there is an external force f(t) acting on it. Suppose that the initial
velocity at the time t = 0 satisfies v(0) = v0. Show that the solution to this equation of motion is:

v(t) = v0e
−γt +

∫ t

0

ds
f(s)

m
eγ(s−t)

where γ = η/m. Then, show that if f(t) goes to a constant f0 at long times, then the particle will reach a
constant velocity vf . What is vf?

There are two forces on the particle, the external force f(t) and the drag force −ηv. Then, Newton’s
Equation of Motion tells us that:

M
dv

dt
= f(t)− ηv(t)
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Rearring this expression and multiplying both sides by eηt/m, we find that:

dv

dt
eηt/m − η

m
veηt/M =

f(t)

m
eηt/m

Using the product rule, we can rewrite the previous expression that:

d

dt

(
veηt/m

)
=

f(t)

m
eηt/m

Integrating both sides from 0 to t, we find:

v(t)eηt/m − v(0) =

∫ t

0

ds
f(s)

m
eηs/m

Solving for v(t), defining γ = η/m, and using our initial condition that v(0) = v0, we find:

v(t) = v0e
−γt +

∫ t

0

ds
f(s)

m
eγ(s−t)

We can rewrite our expression for v in the following way:

v(t) = v0e
−γt +

e−γt

mγ

∫ t

0

ds f(s)
d

ds
eγs

Now, we can integrate by parts to find:

v(t) = v0e
−γt +

f(t)

mγ
− f(0)e−γt

mγ
− e−γt

mγ

∫ t

0

ds f ′(s)eγs

Taking the limit as t goes to infinity, we find:

lim
t→∞

v(t) = lim
t→∞

f(t)

mγ
− lim

t→∞

e−γt

mγ

∫ t

0

ds f ′(s)eγs

We define the final velocity vf to be the limit of the (magnitude of the) velocity in large times. We know
that f(t) converges to f0 in long times, so the first limit is a constant. This also tells us that f ′(t) must
vanish in long times. Then, for sufficiently large times, the integrand becomes arbitrarily small, and the
limit will become dominated by the exponentially decaying prefactor. Thus, the expression vanishes, and
we are left with:

vf =
|f0|
mγ

Note: This argument holds for almost any function f that we would encounter in a physical system,
but it does not hold in general, namely for functions f that are not uniformly continuous close to in-
finity. For those that are not satisfied, an argument can also be made by establishing limits on how far
|f(t)| deviates from |f0| in some region of large t, bounding the integrand and evaluating the resulting
integral, and showing that the result converges in the limit where t is large.
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(b) In a superfluid, the friction depends on the velocity. Suppose that η(v) = η0(v− vc)Θ(v− vc) where η0

is a constant and where Θ(x) = 0 for x < 0 and Θ(x) = 1 for x > 0. Find the new terminal velocity vf
without solving the new equations of motion.

Solution: When the particle is at terminal velocity, it will not be accelerating. Then, the equation of
motion found in the previous part becomes:

0 = lim
t→∞

(
f(t)− η(v)v(t)

)
Substituting in our expression for η, we find:

0 = lim
t→∞

(
f(t)− η0(v − vc)Θ(v − vc)v(t)

)
Evaluating the limits and rearranging the expression, we find:

|f0| = η0(vf − vc)vfΘ(vf − vc)

If f0 vanishes, then the right hand side must vanish as well. This requires that Θ(vf − vc) = 0, and we
have the constraint that vf < vc. If not, then we must have vf > vc, because the right hand side cannot
vanish. In the second case, the expression becomes:

|f0| = η0(vf − vc)vf

Solving this expression for vc, we find that:

vf =
vc
2
±

√
4|f0|+ η0v

2
c

4η0

Notice that we must have vf > vc, which requires that we take the positive sign. Then, we conclude that:

vf =
vc
2
+

√
4|f0|+ η0v

2
c

4η0

(c) Superfluids have quantized vortex ring excitations. For a circular ring of radius R, the energy E and
momentum p are of the form:

E ∼ 1

2
ρκ2R log

(
R

a0

)
p ∼ πρκR2

where ρ is the superfluid density, κ is the circulation quantum, and a0 ∼ 0.1 nm is a vortex core radius.
Suppose that the critical velocity vc for the formation of a vortex ring is given by:

vc ∼ min

{
E

p

}
Show that in an infinite system, we have vc → 0. Find vc if the superfluid is moving through a cylindrical
tube of radius R0. Finally, the vortex ring velocity v is given by:

v =
dE

dp
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Find v as a function of the radius R, and sketch a graph of it.

Solution: Using our expressions for vc, E, and p, we find:

vc ∼ minp

{
E

p

}
= minp


1
2
ρκ2R log

(
R
a0

)
πρκR2

 = minp

{
κ

2πR
log

(
R

a0

)}

Next, using the chain rule, we see that:

d

dp

(
E

p

)
=

d

dR

(
E

p

)
dR

dp
=

d

dR

(
E

p

)(
dp

dR

)−1

=
1

4π2ρR3

{
1− log

(
R

a0

)}
We see that this function is positive for R < a0e and is negative for R > a0e. Furthermore, R must be
much larger than a0 to physically realize a vortex, that is R ≫ a0. Thus, in the region of interest, the
derivative is strictly negative, so E/p is monotonically as R increases and therefore as p increases. Then,
E/p is minimized at the maximum possible value of p, which is at the maximum value of R.

Note: The vortex core size provides a scale to internal structure of the superfluid. It can be shown that
this length is the minimum length over which the wave-function can change. Thus, as the vortex is a re-
gion over which the behavior of the superfluid differs from the overall flow of the larger system, it must
be much larger than a0.

Now, in an infinite system, the radius R of the ring can be arbitrarily large. Furthermore, we see that:

lim
R→∞

κ

2πR
log

(
R

a0

)
= 0

Thus, the minimum value of E/p goes to 0 as R becomes infinitely large, and:

lim
R→∞

vc = 0

Suppose now that the superfluid is constrained to a tube of radius R0. Then, vc is minimized for vortices
with radius R0, and we have:

vc ∼ min

{
κ

2πR0

log

(
R0

a0

)}
The critical velocity is smallest for the lowest circulation quantum, that is when κ = 1. Thus:

vc =
1

2πR0

log

(
R0

a0

)
Finally, using the chain rule and the inverse function theorem, we see that:

v =
dE

dp
=

dE

dR

dR

dp
=

dE

dR

(
dp

dR

)−1

=
κ2ρ

2

{
1 + log

(
R

a0

)}(
1

2πRρκ

)
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Simplifying this result, we find that velocity is given by:

v =
κ

4πR

[
1 + log

(
R

a0

)]
We have plotted our expression for v(R) below with κ = 1 and units such that a0 = 1:
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