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PHYS 403: FINAL EXAM 2021 (from 08.30 hrs Apr 27th to 14.30 hrs Apr 28th)

This is a FINAL EXAM. It will last for 30 HOURS, beginning at 08.30 hrs (8.30 am Vancouver time) on April
27th 2021, and finishing at 14.30 hrs (2.30 pm Vancouver time) on April 28th 2021. You should make no attempt
to collaborate, or discuss this exam, with any other person.
You must upload your finished exam BEFORE 14.30 hrs (2.30 pm) on APRIL 28th, to the canvas webpage.

If for some reason this fails, you can call upon either me, using the Zoom link, or upon the TAs who will be
helping to supervise the exam. If you still can’t upload it, then you should email it directly to me at my email:
stamp@phas.ubc.ca.
You can either type your exam and then just upload the file, or write it out by hand, and then either scan

or photograph it, and upload the file. If you do the latter, then please make sure to write LEGIBLY and NOT
IN PENCIL (which scans and photographs very badly); Please use black pen if you can (blue ink also scans and
photographs badly). Let me emphasize - what we cannot read we will not mark.
If you have questions during the exam, then the best thing to do is try to contact me or a TA over Zoom during

the times we will be available, or by email otherwise (I will be looking constantly at my email). If all else fails, and
you really urgently need help, call me at (604) 209-5777. Please do NOT call me unless it is really important! For
the Zoom link: At least one of us will try to be available on the Zoom link at all times between 08.30-22.00 hrs on
Tuesday, and between 08.00-15.00 hrs on Wednesday (Vancouver time).

EXAM INSTRUCTIONS: The exam is divided into 8 short questions (in section A) and 4 long questions (in
section B). You must answer a total of FOUR short questions from section A, and TWO long questions from section
B. You can choose which questions you decide to answer. Note that extra marks will not be given for answering more
than 4 questions in section A or 2 questions in section B; if you do, we will simply choose those questions which give
you the highest mark.

—————————————

SECTION A: SHORT QUESTIONS (ANSWER 4 of THESE)

QUESTION A.1: QUANTUM GASES

(i): Why does the diameter of a white dwarf decrease when its mass increases?

(ii)Why does the chemical potential of a gas (Bose, Fermi, or classical) never increase (and almost always decreases)
as one raises the temperature?

QUESTION A.2: SPECIFIC HEAT

(i): Consider a set of N non-interacting 2-level systems. What is the difference ∆S = [S(T = ∞)− S(T = 0)] for
this system?

(ii) Suppose we can approximate the specific heat CV (T ) of this system by the simple formula

CV (T ) = Co

[
1− 4

(
T − To

To

)2
]

for To/2 < T < 3To/2, and zero otherwise. Using the relation between the specific heat and the entropy, and the
result you found for ∆S in (i) above, find the value of Co.

QUESTION A.3: 2-LEVEL SYSTEMS

(i): Consider a set of N non-interacting 2-level systems (TLS), with level energies E1 and E2 for each of the TLS.
At temperature T , what is the average energy U(T ) for the total system? Derive also the specific heat CV (T ).

(ii) Find expressions for U(T ) and CV (T ) when kT ≫ |E1 − E2|. You should find the T = ∞ result, and also the
first correction to this result, for finite (but very large) T .
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QUESTION A.4: FERMI DISTRIBUTION

(i): The grand canonical partition function for a single fermion state of energy ϵ is z(ϵ) =
∑

n exp[nβ(µ − ϵ)] =
1 + exp[β(µ − ϵ)]. Show that the mean occupation number for this state is just the Fermi function, ie., that ⟨n⟩ →
f(ϵ− µ) ≡ {1 + exp[β(ϵ− µ)]}−1, which we also write as f(x) = [1 + eβx]−1, where x = (ϵ− µ).

(ii) Then show that the probability of finding n particles in this state is

p(n) =
[1− f(−x)]

n

[f(−x)]n−1

QUESTION A.5: INTERATOMIC POTENTIAL

(i): Consider the 1-dimensional potential

V (x) = Vo

[(ao
x

)12

− 2
(ao
x

)6
]

Find the value of x for which V (x) is a minimum, and find the “curvature” d2V/dx2 at this point. What is the
frequency of small oscillations of a particle of mass M about the minimum in this potential?

(ii) Draw a picture of the potential V (x), and explain briefly how it can be used to model interatomic interactions.
For such interaction, what do you think are typical values for Vo and ao?

QUESTION A.6: ARGON in ATMOSPHERE

(i): Roughly 1 percent of the volume of the earth’s atmosphere is composed of 40Ar. Suppose you are in a bedroom
with a volume of 60 m3. Roughly how many 40Ar atoms are in the room, and what is their total mass?

(ii) In MKS units, roughly what is the total thermal energy associated with the 40Ar atomic motion?

QUESTION A.7: NEGATIVE TEMPERATURE

(i): A set of non-interacting or very weakly interacting spin-1/2 spins has an entropy which looks roughly like
S(U) = So − αU2, for U2 < α, as a function of the total energy U , and is zero for U2 > α. from the definition of
temperature T in terms of S and U for a system in equilibrium, find U in terms of T , and sketch a graph of it.

(ii) What is the specific heat of this system, in the temperature range −∞ < T < ∞? How do you interpret this
result for T < 0?

QUESTION A.8: RADIATION PRESSURE The radiation pressure p from photons is equal to p = 4J/3c,
where J is the radiation flux. A star like the sun emits black-body radiation with flux J = σT 4 per unit area of its
surface, where temperature T is measured in Kelvin units; here σ = 5.67 × 10−8Wm−2K−4, and the sun’s surface
temperature is 6, 000 K. The radius of the sun is RS ∼ 0.7× 106 km.

(i): Consider the forces on an electron at the sun’s surface. If the cross-section for photon-electron scattering is
∼ 6.6× 10−29 m2, and the electron mass is ∼ 9× 10−31 kg, then how do the gravitational and radiation forces on the
electron at the sun’s surface compare (assume here that all the photon energy is taken up by the electron)? You can
assume that the solar mass is 2× 1030 kg, and that the gravitational constant G = 6.67× 10−11m3kg−1s−2.

(ii) How do the radiation force and gravitational force on the electron behave as a function of the distance r from
the sun (for r > Ro)?. What then is the equation of motion for r(t), and what is its solution as a function of time, if
the electron starts at a distance ro = r(t = 0) from the sun?

—————————————
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SECTION B: LONG QUESTIONS (ANSWER 2 of THESE)

QUESTION B.1: SUPERFLUID 4He Superfluid 4He is the best known neutral superfluid; this question
looks at some of its properties.

(i): Draw the energy dispersion relation for quasiparticles in superfluid 4He (ie., the plot of the energy ϵp as a
function of the momentum p). Now, explain why it is that an object with mass M ≫ m4 (where m4 is the mass of
a 4He atom), which is moving through superfluid 4He, will move without friction until it reaches a critical velocity
vc ∼ min(ϵp/|p|). You should consider the problem at finite T , where thermally excited quasiparticles already exist.

(ii) Suppose that the object of mass M were to be moving in some fluid along the x̂ direction. Suppose also that
this fluid has a constant viscosity coefficient η, so that there is a force −ηv(t) acting on the particle in the direction
opposite to its velocity v(t) along x̂. Find the equation of motion of the particle, assuming that there is also an
external force f(t) acting on it along x̂.
Then show that if (i) this force is f(t), and (ii) the initial velocity at t = 0 is v(t = 0) = vo, then the solution to

the equation of motion is

v(t) = voe
−γt +

∫ t

0

dt′
f(t′)

m
e−γ(t−t′)

where γ = η/M .
Now, suppose that the force is actually a constant in time, so that f(t) → fo. Show that after a long time has

elapsed, the particle will then reach a constant terminal velocity vf , and give the result for vf in terms of fo, γ, and
M . How could you have very simply derived this result without solving the equation of motion?

(iii): In a superfluid things are a little different because the friction depends on the velocity. Suppose that the
friction coefficient in the superfluid behaves with velocity according to η(v) = ηo(v − vc) θ(v − vc), where θ(x) is just
the Heaviside or ”step” function (so θ(x) = 0 for x < 0, and θ(x) = 1 for x > 0).
To solve the equation of motion here is complicated - but you can still find the new terminal velocity vf without

doing this. Find the result for vf .

(iv): In a real superfluid one can also have quantized vortex ring excitations, which behave like quasiparticles in
that they can also be excited by interactions with an external body. For a circular ring, one has approximately that
the energy E of the ring and the momentum p of the ring depend on the radius R of the ring according to

E ∼ 1
2ρκ

2R ln
R

ao
; p ∼ πρκR2

where ρ is the superfluid density, κ the circulation quantum, and ao ∼ 0.1 nm is a vortex core radius.
If in analogy with the quasiparticle argument, we suppose that the critical velocity for formation of a vortex ring is

given by vc ∼ min(E/p), then show that for a superfluid in which R can be as large as you like (a superfluid moving
past an infinitely large object), then vc → 0. Show also that if the superfluid is moving through a cylindrical tube of
radius Ro, then vc is finite, and give an expression for it.
Finally, noting that the velocity of the vortex ring excitation itself is given by v = dE/dp, find an expression for

the velocity v(R) as a function of the vortex ring radius, and sketch a graph of it.

QUESTION B.2: DIATOMIC GAS A diatomic molecule has 3 degrees of freedom, viz., translational
motion of the molecular centre of mass, rotational motion abut the centre of mass, and vibrations in distance between
the 2 atoms. We will treat these different degrees of freedom as being independent, ie., with no coupling between
them. We assume the diatom is made from 2 atoms, each with mass m, and mean separation ao.

(i): The moment of inertia of the rotating diatom is I = 1/2ma2o. We also suppose that the frequency of small
harmonic oscillation of the distance x around the mean ao between the atoms is ωo.
Show that we can write the total canonical partition function Z for a gas of N such diatoms as Z = ZtrZrotZvib,

where Ztr comes from the translational degrees of freedom, where Zrot = zNI and Zvib = zNωo
, and show that

zI =
∞∑
j=0

(2j + 1) exp[−β~2j(j + 1)/2I] ; zωo =
∞∑

n=o

exp[−β~(n+ 1
2 )ωo]
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You do not have to evaluate the translational term Ztr.

(ii) Let us first consider the vibrational modes. Evaluate the partition function zωo(β), and then show that the
vibrational contribution to the energy of the system is Uvib(β) = 1

2N~ωo coth(β~ωo/2). From this find also the

contribution Cvib
V (β) to the specific heat.

Finally, sketch the behaviour of both Uvib(β) and Cvib
V (β) as functions of the temperature T .

(iii) Now let’s look at Zrot for the rotational motion of the diatom. The low T behaviour is easy, because the terms
in the sum in the expression for zI(β) decrease rapidly with increasing j. By taking just the first 2 terms in the sum,
find a simple low-T result for zI(β), and from this find expressions for Urot(T ) and Crot

V (T ) for the N diatoms in the
low T regime.

For the high-T behaviour we need to approximate the sum as an integral. Using the result
∫∞
0

dxx e−x2

= 1/2,

find a simple result for zI(β) in the high-T regime where kT ≫ ~2/2I, with the result ∝ kT . Then, from this result,
find the energy Urot and Crot

V (T ) for the N diatoms in the high T regime.
Finally, plot sketches for Urot and Crot

V (T ) for the N diatoms as a function of T ; you can use the expression you
found for the low-T and high-T results, and then just simply interpolate between them.

(iv) The “third” contribution to the specific heat coming from the translational degrees of freedom is just that from
a 3-dimensional classical Maxwell-Boltzmann gas. Typically, the vibrational zero point energy ~ωo/2 ≫ ~Eo, where
Eo = ~2/2I is the rotational zero point energy. Using the results you have derived above for Crot

V (T ) and Cvib
V (T ),

sketch the result you expect for the TOTAL specific heat CV (T ) for a gas of N diatoms, as a function of T . Explain
the limiting behaviour you find for CV (T ) for (i) high T (ie., for T ≫ ~ωo/2) and for low T (ie., for kT ≪ ~2/2I)?

QUESTION B.3: The YOUNG and the OLD UNIVERSE Near the beginning its life, the universe
was composed of a variety of fermionic particles, plus photons. Near the end of its life (using extrapolations from
what we already know), it will be a mixture of black holes and photons.

(i) Describe the universe as it was until a time t = τo after the Big Bang, where τo ∼ 400, 000 yrs (you can ignore
the time in the first few years after the Big Bang). What happened around t ∼ τo, and why? Why did this happen
when the temperature T ∼ 4, 000K?

(ii) In the earlier stages of the universe (for t ≪ τo), we can assume that the system is ultra-relativistic, meaning
that the fermion particle energy ϵ ≫ mc2, where m is the fermion rest mass. We can also assume the system is at very
high temperature, so that |µ|/kT → 0. Under these conditions, show that the energy of a fermion with momentum p
is ϵp ∼ pc, and find expressions for (a) the number density ρ = N/V , and (b) the energy density u = U/V , for the
fermions - showing in particular that u ∝ T 4. You can write the answers in terms of the definite integrals

Fn =

∫ ∞

0

dx
xn

ex + 1

which you do not need to evaluate.

(iii) In the universe at present (at a time t ∼ 1.4 × 1010 yrs after the Big Bang), the universe is populated by
a mixture of matter and radiation (plus the enigmatic “dark matter”). The matter is a mixture of stars and black
holes, along with a lot of sub-stellar “junk” (sub-stellar brown dwarfs, planets, planetoids, dust, gas, etc.).
Most of the stars will end up as white dwarfs (which then cool to black dwarfs after a time period up to ∼ 1014

yrs). Why does this happen? Which stars will not end up as black dwarfs, and what will happen to them?
Low-mass black dwarfs can be treated using the usual non-relativistic Chandrasekhar argument, to show that their

radius Ro = cM−1/3, where the constant c = 2Cf/GCg is derived by minimizing the sum of the degeneracy energy

Uf = CfM
5/3/R2 and the gravitational energy Ug = −GcgM

2/R, where R is the black dwarf radius, and M is its
mass. Suppose now that the dwarf has not yet cooled (ie., it is still white), so that there is an extra small radiative
thermal contribution UT = α(T,M)R2 to the energy. Assuming that α(T,M) is “small”, find the new solution

R̃ = Ro + δR for the radius, by looking for the small correction to the original minimization equation (formally, we
assume that both δR and α are ∼ O(ϵ), where ϵ ≪ 1, and isolate terms ∼ O(ϵ) in our equations).

(iv) After extremely long times almost all matter will amalgamate into black holes, apart from a photon bath which
steadily cools (after far longer times > 10100 yrs, almost all of the black holes will decay by the Hawking process into
radiation as well). Suppose at some given time the volume of the universe is VH . Using the Planck result that the
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total photon energy of the universe Uph ∝ VHT 4, show that the photon bath obeys CV (T ) ∝ VHT 3, and from this,
assuming that the expansion of the universe is adiabatic, find the dependence of the entropy on VH ad T .
Finally, let us assume that the expansion of the universe obeys the Hubble law, so that VH(t) ∝ t3, and using the

Planck result that the energy density of a photon gas is given in MKS units by

u(T ) =
8π5

15

(kT )4

(hc)3

find (a) the temperature of the photons after a time t = 700×109 yrs, assuming that at the present time of t = 1.4×1010

yrs, one has T = 2.7 K; and (b) find the photon energy density of the universe at the present time, in MKS units.

QUESTION B.4: METALS and INSULATORS Solids can be classified into metals or insulators. Very
roughly speaking, we can say that (a) Metals have mobile electrons, with dispersion relation ϵp ∼ p2/2m1, a Fermi
surface, and behave similarly to an electron gas, whereas (b) electrons in an insulator with energy near the Fermi
energy are bound to atoms and not mobile, and have no Fermi surface. Only above an “energy gap” are they mobile,
and we can write an approximate dispersion relation ϵp ∼ Eo+ p2/2m2. The “masses” m1 and m2 are not necessarily
equal to the free electron mass mo. Typically the gap Eo ∼ 1− 2 eV in size.

(i) Noting we also have acoustic and possibly optical phonons, draw pictures of how you think the specific heat
CV (T ) will behave as a function of temperature T , for both metals and insulators, and explain why the different
contributions have the temperature dependence that they do.

(ii) At low T , a degenerate fermion system shows a specific heat of form CV (T ) ∝ g(EF )T , where g(EF ) is the
1-particle density of states at the Fermi energy. From this result, deduce the low-T behaviour of (a) the energy U(T )
(b) the entropy S(T ), and (c) the free energy F (T ). Can you give a qualitative argument which justifies the result
you get for U(T )?
A useful way to measure the density of states g(E) in a metallic system is to look at the rate of photon absorption

by the metal as a function of photon frequency ω. Photons will only be absorbed if an electron can be excited from an
occupied state at one energy to an unoccupied state at another higher energy. Draw what you think you would see for
the photon absorption as a function of frequency ω in (a) a low T metal, and (b) a low T insulator, with Eo = 2 eV .

(iii) A very common approximation when dealing with acoustic phonons is to assume a phonon density of states
g(E) = 9E2/(kBTD)3 for 0 < E < θD, and g(E) = 0 for E > θD. Here TD is the “Debye temperature” and
θD = kBTD is the “Debye energy”. Typically TD is somewhere in the range 100 K − 600 K for different solids.
From this information, you should be able to derive an integral expression for lnΞ(T ) for the acoustic phonon

system (where Ξ is the grand canonical partition function), and also for the energy U(T ) [HINT: use the analogy with
photons]. Assume a system of unit volume, so that U(T ) = u(T ), the energy density; and assume that the atoms
taking part in acoustic vibrations each have mass M . You do not need to evaluate the integrals over energy. You will
use the result that the phonon chemical potential µ = 0; why is this the case?
Finally, we want to evaluate the root mean square displacement of atoms in the solid caused by acoustic phonons.

This can be shown to be given by x̄ = [⟨x2⟩]1/2, where

⟨x2⟩ =
~2

2M

∫
dE

E
g(E)[1 + 2n(E)]

in which n(E) is the Bose distribution function. Derive an integral expression for ⟨x2⟩, and then show that in the low
temperature limit T ≪ TD, we have a finite x̄ given by

x̄ ∼ 3
2~(1/MθD)1/2 (T → 0)

How do you interpret this result physically?

(iv) All of the above ignores the fact that in any real solid there will be defects (which behave like 2-level systems),
electronic spin impurities, and nuclear spins. To isolate out the effect of electronic spin impurities in an insulator, we
can apply a magnetic field. Suppose these impurities have spin-1/2, and we apply a magnetic field B to the system.
What then is the partition function for a set of N such impurities, and what is their contribution to the specific heat?
Finally, draw a graph of the resulting specific heat for an insulator in the range 0 < T < 50 K, assuming that (a) the
Debye temperature TD = 500 K, and (b) the magnetic moment of the spin impurities is µ/kB = 0.7 K/T , where T
means “Tesla”, and we are in an applied field of 20 T .
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—————————————

END of FINAL EXAM


