PHYS 403: HOMEWORK ASSIGNMENT No. 4: DEGENERATE FERMIONS

(April 6th, 2021)

DEADLINE for HOMEWORK: FRIDAY, April 16th, 2021

To be uploaded by 11.59 pm, April 16th- Late Homework will not be accepted

QUESTION (1) DEGENERATE FERMIONS - NUMBERS:

(i) Consider the sun, of mass $M_s = 2 \times 10^{30}$ kg, to be a plasma of completely ionized H atoms, of diameter 1.3×10^6 km. How many electrons are there in the sun? If the surface temperature of the sun is 6,000K, find the power output of the sun. Finally - the temperature at the centre of the sun is 1.5×10^6 K, so what is the effective radius of the region in the sun where fusion is taking place?

(ii) Suppose at the end of its life the sun collapses to a white dwarf, with the same mass, but with radius 20,000 km, and uniform density. What will be the Fermi energy of the electrons? If the white dwarf surface temperature is 10^{7} K, how degenerate are the electrons?

(iii) Now suppose the sun collapses to form a neutron star, again with the same mass. Supposing a uniform density, what will be the Fermi energy of the nucleons, in both eV and in temperature units?

QUESTION (2) DEGENERATE FERMIONS - MEAN ENERGIES:

(i) Show that for a non-relativistic 3-dimensional Fermi gas at temperature T = 0, the mean energy per fermion is given by $\langle \epsilon \rangle = 3E_F/5$.

(ii) Now find out what is $\langle \epsilon \rangle$ for a 3-dimensional Fermi gas at temperature T = 0 in the extreme relativistic limit, i.e., the typical momentum of the fermions satisfies $p \gg mc$.

(iii) Finally, suppose we now have a 2-dimensional Fermi gas at T = 0. Find the mean energy per fermion in this case, both in the non-relativistic and relativistic limits.

END of 3rd HOMEWORK ASSIGNMENT