PHYS 403: HOMEWORK ASSIGNMENT No. 3: SOME REAL WORLD SYSTEMS

(March 19th, 2021)

DEADLINE for HOMEWORK: FRIDAY, April 2nd, 2021

To be uploaded by 11.59 pm, April 2nd- Late Homework will not be accepted

QUESTION (1) HEATING A LIQUID: When a liquid is heated it eventually boils - but this does not necessarily happen at the boiling point. We would like to understand why this is.
(i): Consider a bubble of vapour forming inside a hot liquid. The energy of the bubble is a competition between the surface energy (which is positive), and the bulk energy (which is negative, because the liquid is above its boiling point). Assuming that the bulk energy goes like $U_{B}=U_{o}\left(T_{c}-T\right)$ per unit volume of bubble, where T_{c} is the liquid-gas phase transition temperature, and that the surface tension γ of the bubble is independent of temperature T, find an expression for the energy $U(R)$ of a spherical bubble as a function of its radius R, when $T>T_{c}$. Find the radius R_{c} at which this energy is a maximum.
(ii): If the bubble radius can grow past R_{c}, the system will boil. Estimate the probability that this will happen from a thermodynamic description of these bubbles, as a function of their radius, in the canonical distribution.

QUESTION (2) PHOTON GAS: We consider a gas of photons at equilibrium temperature T, in a box of volume V; the photons move at velocity $c \sim 3 \times 10^{8} \mathrm{~ms}^{-1}$, and have 2 internal polarization states.
(i): Show that the pressure $p(T)$ of the photon gas satisfies $3 p(T)=u(T)$, where $u(T)$ is the energy density (energy per unit volume).
(ii): The chemical potential of a gas of photons in equilibrium at temperature T, in a box of volume V, is $\mu=0$ for any temperature - explain why this is. Then, using the Maxwell relation relating entropy S, temperature T, pressure p, and volume V of the photon system, write the 2nd law of thermodynamics in differential form for the photon gas, and show that

$$
\begin{equation*}
u(T)=T(\partial p / \partial T)_{V}-p(T) \tag{0.1}
\end{equation*}
$$

and then, using the result that $3 p(T)=u(T)$, already found above, show that $T(d u / d T)-4 u=0$. What is the solution to this equation, and what well-known radiation law does it express?

Finally, let us imagine that the volume V of the box is changing slowly with time (so that the change is adiabatic). Again using the 2nd law of thermodynamics, show that the constant entropy of the system obeys $S \propto V T^{3}$.
(iii): The sun can be considered to be a black box radiator at a temperature $T=6000 \mathrm{~K}$. The Stefan-Boltzmann law states that the energy radiated per unit second by a black body, per unit area of the body, is

$$
\begin{equation*}
J(T)=J(T)=\sigma T^{4} \tag{0.2}
\end{equation*}
$$

where the constant $\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$. The radius of the sun is $r_{o} \sim 0.7 \times 10^{6} \mathrm{~km}$, and its distance from the earth is $R_{o} \sim 1.5 \times 10^{8} \mathrm{~km}$.

From this information find (a) the radiant power from the sun, in Watts per square metre, at the distance of the earth; (b) the temperature reached by a black body solar power panel on a satellite, directly facing the sun (remember that it radiates in both directions); and (c) the pressure on this panel, per square metre, from the solar radiation.

