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PHYS 403: HOMEWORK ASSIGNMENT No. 2:
CANONICAL and GRAND CANONICAL ENSEMBLES

(Feb. 13th, 2021)

NEW DEADLINE for HOMEWORK: MONDAY, March 15th, 2021

To be uploaded by 11.59 pm, March 15th- Late Homework will not be accepted

QUESTION (1) DISTRIBUTION of OSCILLATORS: Suppose we have a set of N non-interacting
quantum oscillators, with different oscillator frequencies {ωj}. The oscillator frequencies are distributed equally in
the range 0 < ωj < Ωo, ie., the probability that an oscillator will have a frequency ω in this range is the same for any
ω, and therefore independent of ω. Assume that N is very large, so that we can treat this probability as a continuous
function of ω.

1(a) Find expressions for the free energy F (T ) and the energy U(T ) in terms of T , N , and Eo = h̄Ωo.

1(b) Now find an expression for the specific heat CV (T ) of the system. Once you have done this, find limiting
expressions for this result, in the 2 limits kBT ≫ Eo and kBT ≪ Eo.

QUESTION (2) EQUILIBRIUM for HYDROGEN GAS: Consider a H atom inside a 3-d box with side
L. When L → ∞, in free space, the bound state levels for the electron, labeled by quantum number n, have energy
En = −Eo/n

2, where Eo = me4/8ϵ2oh
2 is the Rydberg constant (Eo ∼ 13.605 eV ∼ 157, 870 K in temperature units).

When L is finite, we an estimate the maximum value of n by noting that the the radius rn of the n-th state is
rn ∼ ron

2, where ro = 4πεoh̄
2/me2 is the Bohr radius. For the atom to fit into the box, we then require that

rmax = L, giving a condition for the maximum value nL for some value of L.
We will use this toy model to derive some rather important approximate results. We will ignore all states with

energy E > 0, ie., all excited states of the system, and only consider the bound states.

2(i) First consider the case L → ∞, and calculate the canonical partition function Z(T ) and the energy U(T ).
Compare the results for T > 0, and for T = 0.

2(ii) Now consider a finite box with L = rn, so there are only nL bound-state levels in the box. Find expressions
for Z(T ) and U(T ); then approximate these results for nL ≫ 1 by continuous integrals over n between the limits
1 < n < nL. One can estimate these integrals for both the case n2

L ≫ Eo/kBT , ie., for T ≫ TL, and the case
T ≪ TL; here kBTL = Eoro/L. Give these estimates, and try to interpret them for a gas of atomic hydrogen at
density ρ = 1/L3.

Hint: to fully understand the result you find in 2(i) it will help to also do 2(ii), and then compare the result with
what you found in 2(i).

QUESTION (3) ELECTRON-POSITRON GAS: We ionize a H gas of number density nH , at very high
T (ie., kBT ≫ Eo, where Eo is the Rydberg ionization energy). Ignoring the protons, we ask what are the number
densities n+(T ) and n−(T ) of positrons and electrons at a temperature T . The positrons exist because at high
energies, electrons can scatter off each other to create electron-positron pairs, in processes like 2e− → 2e−+(e++e−)
(note that high-energy proton-electron scattering will also produce e+ − e− pairs).

3(i) In the interior of stars on can assume that 2mc2 ≫ kBT ≫ Eo, where m is the electron mass. Now find n+(T )
and n−(T ) as a function of T . By assuming the chemical potentials µ+ and −µ− to be equal (ie., µ+ + µ− = 0), and
assuming that because 2mc2 ≫ kBT , we have n+ ≪ nH , use charge conservation to find this number density n+(T )
of positrons.

3(ii) Now let’s assume conditions that are reasonable near the centre of a star. Assume that the H density is
ρH = 100g/cm3. Convert this to a number density, and find out at what temperatures one has number densities of
(a) n+ = 1010/cm3 and (b) n+ = 1/cm3.
Finally, assume that T = 15 million K (roughly the temperature at the centre of the sun), and find n+.

END of 2nd HOMEWORK ASSIGNMENT


