PHYS 403: HOMEWORK ASSIGNMENT No. 2: CANONICAL and GRAND CANONICAL ENSEMBLES

(Feb. 13th, 2021)
NEW DEADLINE for HOMEWORK: MONDAY, March 15th, 2021
To be uploaded by 11.59 pm , March 15th- Late Homework will not be accepted

QUESTION (1) DISTRIBUTION of OSCILLATORS: Suppose we have a set of N non-interacting quantum oscillators, with different oscillator frequencies $\left\{\omega_{j}\right\}$. The oscillator frequencies are distributed equally in the range $0<\omega_{j}<\Omega_{o}$, ie., the probability that an oscillator will have a frequency ω in this range is the same for any ω, and therefore independent of ω. Assume that N is very large, so that we can treat this probability as a continuous function of ω.
$\mathbf{1 (a)}$ Find expressions for the free energy $F(T)$ and the energy $U(T)$ in terms of T, N, and $E_{o}=\hbar \Omega_{o}$.
$\mathbf{1}(\mathbf{b})$ Now find an expression for the specific heat $C_{V}(T)$ of the system. Once you have done this, find limiting expressions for this result, in the 2 limits $k_{B} T \gg E_{o}$ and $k_{B} T \ll E_{o}$.

QUESTION (2) EQUILIBRIUM for HYDROGEN GAS: Consider a H atom inside a 3 -d box with side L. When $L \rightarrow \infty$, in free space, the bound state levels for the electron, labeled by quantum number n, have energy $E_{n}=-E_{o} / n^{2}$, where $E_{o}=m e^{4} / 8 \epsilon_{o}^{2} h^{2}$ is the Rydberg constant ($E_{o} \sim 13.605 \mathrm{eV} \sim 157,870 \mathrm{~K}$ in temperature units).

When L is finite, we an estimate the maximum value of n by noting that the the radius r_{n} of the n-th state is $r_{n} \sim r_{o} n^{2}$, where $r_{o}=4 \pi \varepsilon_{o} \hbar^{2} / m e^{2}$ is the Bohr radius. For the atom to fit into the box, we then require that $r_{\max }=L$, giving a condition for the maximum value n_{L} for some value of L.

We will use this toy model to derive some rather important approximate results. We will ignore all states with energy $E>0$, ie., all excited states of the system, and only consider the bound states.

2(i) First consider the case $L \rightarrow \infty$, and calculate the canonical partition function $Z(T)$ and the energy $U(T)$. Compare the results for $T>0$, and for $T=0$.

2(ii) Now consider a finite box with $L=r_{n}$, so there are only n_{L} bound-state levels in the box. Find expressions for $Z(T)$ and $U(T)$; then approximate these results for $n_{L} \gg 1$ by continuous integrals over n between the limits $1<n<n_{L}$. One can estimate these integrals for both the case $n_{L}^{2} \gg E_{o} / k_{B} T$, ie., for $T \gg T_{L}$, and the case $T \ll T_{L}$; here $k_{B} T_{L}=E_{o} r_{o} / L$. Give these estimates, and try to interpret them for a gas of atomic hydrogen at density $\rho=1 / L^{3}$.

Hint: to fully understand the result you find in 2(i) it will help to also do 2(ii), and then compare the result with what you found in 2(i).

QUESTION (3) ELECTRON-POSITRON GAS: We ionize a H gas of number density n_{H}, at very high T (ie., $k_{B} T \gg E_{o}$, where E_{o} is the Rydberg ionization energy). Ignoring the protons, we ask what are the number densities $n_{+}(T)$ and $n_{-}(T)$ of positrons and electrons at a temperature T. The positrons exist because at high energies, electrons can scatter off each other to create electron-positron pairs, in processes like $2 e^{-} \rightarrow 2 e^{-}+\left(e^{+}+e^{-}\right)$ (note that high-energy proton-electron scattering will also produce $e^{+}-e^{-}$pairs).

3(i) In the interior of stars on can assume that $2 m c^{2} \gg k_{B} T \gg E_{o}$, where m is the electron mass. Now find $n_{+}(T)$ and $n_{-}(T)$ as a function of T. By assuming the chemical potentials μ_{+}and $-\mu_{-}$to be equal (ie., $\mu_{+}+\mu_{-}=0$), and assuming that because $2 m c^{2} \gg k_{B} T$, we have $n_{+} \ll n_{H}$, use charge conservation to find this number density $n_{+}(T)$ of positrons.

3(ii) Now let's assume conditions that are reasonable near the centre of a star. Assume that the H density is $\rho_{H}=100 \mathrm{~g} / \mathrm{cm}^{3}$. Convert this to a number density, and find out at what temperatures one has number densities of (a) $n_{+}=10^{10} / \mathrm{cm}^{3}$ and (b) $n_{+}=1 / \mathrm{cm}^{3}$.

Finally, assume that $T=15$ million K (roughly the temperature at the centre of the sun), and find n_{+}.

