PHYS 403: HOMEWORK ASSIGNMENT No. 1: PROBABILITIES, THERMODYNAMICS, and MICROSTATES

(Jan. 24th, 2021)
HOMEWORK DUE: WEDNESDAY, Feb 10th, 2021
To be uploaded by 11.59 pm , Feb 10th- Late Homework will not be accepted

QUESTION (1) PROBABILITIES for DISCRETE OUTCOMES: This question is to help you with calculating probabilities for a finite set of discrete outcomes.

Two players, A and B, are each dealt a hand of 5 cards from a randomized pack of 52 cards (the usual pack here, with aces, kings, queens, jacks, and numbers from two to ten).
(a) What is the probability that player A will get 3 Aces in their hand of 5 cards?

1(b) Suppose now that player A throws away two cards, leaving only 3 Aces in his/her hand. The he/she is dealt two more cards. What is the probability that one of these 2 cards is the fourth Ace?

QUESTION (2) THERMODYNAMICS for a MAGNETIC SYSTEM: We consider an incompressible magnetic system, so that we can ignore any changes in volume. Assume the system has magnetization M along an external field B.

2(a) Derive the infinitesimal change $d F$ for the Helmholtz free energy; Then an expression for the infinitesimal change $d U$ in energy brought about by changes in the extensive variables of the system;

2(b) Now find an expression for the rate of change of S with respect to changes in M, in terms of the change $d T$ when we make a change $d B$ in the external field.

2(c) Now suppose we allow particles to move in and out of this system. What now do we find for $d F$ ad $d U$? And what is the new relationship for the rate of change of S with respect to changes in M ?

QUESTION (3) N-SPIN SYSTEM: Consider a set of N non-interacting spin- 1 systems in a magnetic field, such that the energy of each individual spin is $\epsilon_{j}=0, \epsilon_{j}=\Delta_{o}$, or $\epsilon_{j}=-\Delta_{o}$.

3(i) Find W, the number of available microstates for a system having energy U; note that the value of U ranges from $U_{\text {min }}=-N \Delta_{o}$ up to $U_{\max }=N \Delta_{o}$, in discrete steps of Δ_{o}

3(ii) Using the relation that the entropy $S=k_{B} \ln W$, And assuming that $N \gg 1$, find an expression for the entropy S as a function of the energy U of the system.

END of 1ST HOMEWORK ASSIGNMENT

