PHYS 403: HOMEWORK ASSIGNMENT No. 3: CANONICAL DISTRIBUTION

(Feb 13th, 2020)

HOMEWORK DUE: WEDNESDAY, FEB 26th, 2020

To be handed in during class- Late Homework will not be accepted

QUESTION (1) EINSTEIN PHONONS: This one is to give you a feeling for Einstein phonons (or "vibrons") as they exist in molecules. We will look at the CO_{2} molecule, which is linear in shape, and has 4 vibrational modes with frequencies ω_{j}, with $j=1,2, . .4$.
$\mathbf{1}(\mathbf{a})$ Write down the canonical partition function for the system of phonons, and then find a result for the specific heat due to these phonons, as a function of temperature T, in terms of the $\left\{\omega_{j}\right\}$.
$\mathbf{1}(\mathbf{b})$ Suppose the phonon frequencies are given in temperature units defined as $\theta_{j}=\hbar \omega_{j} / k_{B}$, with the values $\theta_{1}=3360 K, \theta_{2}=1890 K$, and $\theta_{3}=\theta_{4}=954 K$. Find the heat capacity of the molecule at a temperature $T=300 K$.
$\mathbf{1 (c)}$ Now, using software of your choice, plot the specific heat of this system as a function of temperature over the temperature range $0<T<3000 K$. Assume that the system remains a low-density gas throughout this temperature range. How accurate do you think this assumption is?

QUESTION (2) ROTATING BODY: Suppose we have an ideal gas of N_{o} particles in a cylinder of height z_{o} and radius R_{o}, rotating with angular velocity Ω_{o} about its axis. Then it can be shown that the canonical partition function for the gas rotating with the cylinder is given by

$$
\begin{equation*}
Z\left(\Omega_{o}, \beta\right)=Z_{o}(\beta) Z_{\text {rot }}\left(\Omega_{o}, \beta\right) \tag{0.1}
\end{equation*}
$$

where $Z_{o}(\beta)$ is the partition function when $\Omega_{o}=0$, and the multiplicative factor $Z_{r o t}\left(\Omega_{o}, \beta\right)$ is given by an integral over the gas volume of form

$$
\begin{equation*}
Z_{r o t}\left(\Omega_{o}, \beta\right)=\left(\frac{1}{V_{o}} \int d V \exp [-\beta U(r)]\right)^{N_{o}} \tag{0.2}
\end{equation*}
$$

in which $U(r)=-\frac{1}{2} m \Omega_{o}^{2} r^{2}$ is the "centrifugal potential", $V_{o}=\pi R_{o}^{2} z_{o}$ is the volume of the gas, and N_{o} is the number of particles in the gas.

2(a) Show, by direct integration over the the volume of the gas that the free energy is given by

$$
\begin{equation*}
F=F_{o}-N_{o} k_{B} T \ln \left(\frac{2 k_{B} T}{m \Omega_{o}^{2} R_{o}^{2}}\left(\exp \left[m \Omega_{o}^{2} R_{o}^{2} / 2 k_{B} T\right]-1\right)\right) \tag{0.3}
\end{equation*}
$$

where $F_{o}(\beta)$ is the free energy when $\Omega_{o}=0$.
$\mathbf{2 (b)}$ Now find the correction $\Delta C_{V}\left(T, \Omega_{o}\right)$ to the specific heat $C_{V}\left(T, \Omega_{o}=0\right)$ as a function of the rotation rate.

