PHYS 403: HOMEWORK ASSIGNMENT No. 1: MICROSTATES and PROBABILITIES

(Jan. 14th, 2020)

HOMEWORK DUE: WEDNESDAY, JAN 22nd, 2020
To be handed in during class- Late Homework will not be accepted

QUESTION (1) PROBABILITIES for DISCRETE OUTCOMES: This one is to brush up your understanding of probability theory.

You are dealt a hand of 5 cards from a randomized pack of 52 cards (the usual pack here, with aces, kings, queens, jacks, and numbers from two to ten).
$\mathbf{1}(\mathbf{a})$ What is the probability that you will get "two pairs"? This means a hand in which you have a pair of one card, a pair of another card, and any other card (an example would be 2 kings, two fours, and a seven).
$\mathbf{1}(\mathbf{b})$ What is the probability that you will get a hand with two pairs, in which one pair is a pair of aces, and the other pair is any pair you like (apart from another pair of aces of course)?

QUESTION (2) MICROSTATES for MODEL SYSTEMS: This one is to help you see how probabilistic arguments can be used on simple models for many-body systems.

1 (a) Consider a system of $N^{\prime} 3$-bits' (ie., spin- 1 systems), in which each spin can be in state $|1\rangle,|0\rangle$ or $|-1\rangle$, (where $\pm 1,0$ refer to the spin projection along the z axis). Assume there is no applied field, so all of the 3^{N} states are equally probable.

What then is the probability that you will find the total system with a polarization m along the z axis, where $N \geq|m| ?$

1(b) Now consider a set of N simple harmonic oscillators (SHO's), each with the same frequency ω_{o}. We would like to know the number of microstates which all correspond to the same macrostate, having total energy $E_{n}=E_{o}+n \hbar \omega_{o}$, where $E_{o}=n \hbar \omega_{o} / 2$ is the zero-point energy. Show that this number is just

$$
\begin{equation*}
\Omega_{N}(n)=\frac{(N-1+n)!}{(N-1)!n!} \tag{0.1}
\end{equation*}
$$

END of 1ST HOMEWORK ASSIGNMENT

