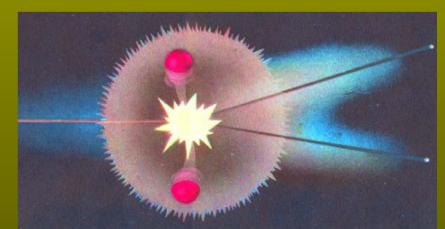
NUCLEAR FISSION- a Tunneling Process

Nuclear fission, described on p. 4.30, is an extremely rare process. A U nucleus will on average take 4.5 billion yrs. to undergo fission- although the frequency of oscillations inside the nucleus is ~ 10^{21} per second. This means a tunneling probability ~ 10^{-38} – a very small number. Actually all

Hahn & Strassmann – the discovery of nuclear fission in Berlin (1938)

several neutrons- giving the possibility of chain reaction. All this was worked out by Frisch & Meitner within days of hearing of the discovery of fission.

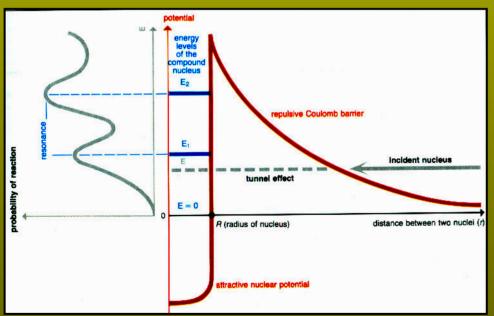
nuclei except Fe decay, but only a few do


it fast enough to be seen, except for very heavy ones- which decay rather fast.

If a nucleus absorbs neutrons it can become

much more unstable, undergoing fission with emission of

Kaiser Wilhelm Institute (Berlin) in 1938

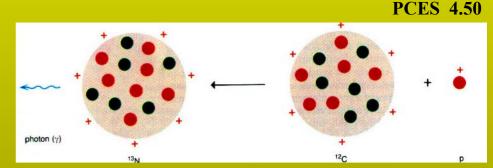

Neutron-induced fission- with accompanying emission of 2 neutrons

NUCLEAR FUSION

If high-energy charged particles approach a charged nucleus they will usually "bounce off" the strong repulsive potential (recall Rutherford scattering, page 4.15). However there is also a small probability they can tunnel through the barrier and fuse with the nucleus, forming a new heavier nucleus. This will get rid of its excess energy by re-emitting photons or a few sub-nuclear particles (protons, neutrons, etc)- which can then fuse with other nuclei.

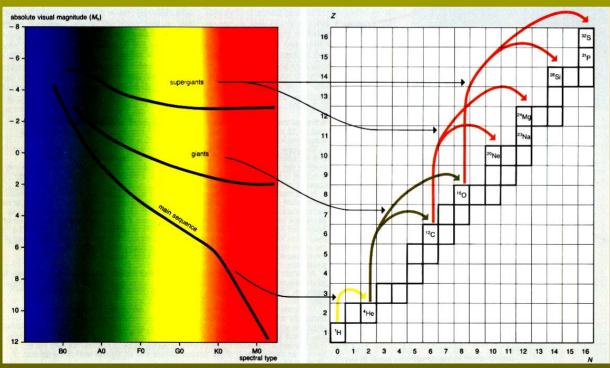
A He-4 nucleus (2 protons, 2 neutrons) +H-3 (tritium-1 proton + 2 neutrons) gives Li-7

A high energy particle coming from the right can tunnel through the Coulomb barrier to an energy level in the nucleus- a bound state of both together In most cases we will get scatteringthe tunneling probability is very small. To



A H fusion bomb- as in the Sun, H fuses mainly to He.

increase it we need higher energy particles. Thus fusion takes place if the nuclei are rushing around at very high temperatures (roughly 10⁸ K in a nuclear fusion bomb). The photons & other particles emitted come out with similar energies.


FUSION in STARS

This is extremely complex- there is a huge variety of interconnected chain reactions. For it to proceed the different nuclei must be at high T. The radiation emitted during the fusion keeps T high. Slowly the heavier

A simple fusion process- a proton fuses with C-12 to make N-13, with emission of a photon.

elements up to Fe (whose nucleus has 26 protons and 30 neutrons) are synthesized- depending on the mass, this may take from 2 million to 100 billion yrs.To make heavier elements requires higher T; the star core heats up and it

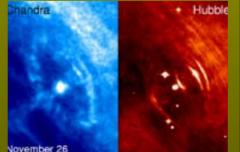
Some of the many nucleosynthesis preocesses involved in stars

expands to a giant or a supergiant.

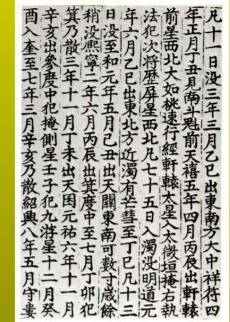
However Fe is the most stable nucleus- after this one cannot go farther with fusion. The star has then run out of fuel. If it is a light star it will then collapse to a white dwarf, of planetary diameter, and cool over billions of years to a black dwarf.

Massive stars behave differently...

NUCLEOSYNTHESIS in SUPERNOVAE



SN 1987A in the Larger Magellanic Cloud (lower left)


The remaining stellar core has no radiation pressure from nuclear fusion to support it, & collapses to a neutron star or black hole. This still glows feebly, with occasional flares from accreting matter.

SN 1987A, v. high magnification, 10 yrs later A massive star ends its life in a spectacular collapse (taking only 10-50 secs), followed by explosive rebound, which converts a mass of several suns into energy (E = mc²). This process creates almost all heavy elements in the universe.

Centre of M1, in X-rays & in red light

Observation of Crab Supernova in 1058 AD

Crab Nebula M1 now, 945 yrs laterit is several light yrs across

PCES 4.51

PCES 4.52

The STUFF of LIFE

The material blown off from a supernovae is moving fastsometimes >10,000 km/sec; it is rapidly dispersed around the galaxy. Material blown off from unstable giant or supergiant stars contributes even more to the interstellar medium.

IC 418- the 'spirograph' planetary nebula

Blow-off from Eta Carinae in 1880-90 obscures the central star

Supernova material crashing into the medium creates shock waves which compress the medium & initiate gravitational collapse of gas & dust clouds. The supernova material seeds these clouds with heavy elements- from which the planets, and we ourselves, are made.

The Vela supernova remnant extends over many light years, still glowing.

A close-up shows a shock front (& a meteor track on the photo)