
The Uncertainty Principle  I
The uncertainty principle is really just a fact about 
waves of any kind. In the case of quantum particles 
it says the following: 

Suppose we localize the probability wave of a particle so that it is confined to a length 
of magnitude Δr (often called a “wave-packet” of size Δr). We say the position is 
UNCERTAIN, because it can be anywhere in this region. The uncertainty principle says 
that the momentum p of the particle is also uncertain- it is also smeared out, over a 
range Δp. The crucial result is that          Δr  ~  h/Δp

or Δr Δp ~  h  where h is Planck’s constant.
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QUANTUM MECHANICS –
Uncertainty, Measurement, 
& Entanglement

Now we come to the bizarre implications of the 
Quantum rules that were introduced in the last 
section…



Uncertainty Principle II
How can we understand the 

uncertainty principle? What it is 
saying is shown at right- if we want 
to make a wave-packet of spatial 
extent Δr, we can only do this by 
adding together waves of different 
λ, ie. different p.

The net result is that a spread or uncertainty Δr in position means uncertainty 
Δp in momentum. The smaller is Δr, the larger is Δp (and vice-versa). 

Actually we have met this already, it is merely a fact about waves. Thus 
diffraction effects are always larger if we 
confine a wave with a small hole. It is 
easy to show that a wave going through a 
hole of size d will spread an angle α by 
diffraction, where 

α  ∼  λ/d  =  h/(p.Δr)
since d is just Δr here. The diffraction 
gives a momentum kick proportional to 
α, so that Δp ~ αp.  We then just get the 
uncertainty principle back.  

A wave-packet confined to a size 
Δr; the spread in wavelengths  
gives a spread Δp in momentum

LEFT: if the wavelength is the same size or smaller 
than the hole, we get diffraction over all angles. 
RIGHT: small wavelength gives small angle diffraction 
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Uncertainty Principle III
One can consider many examples of the uncertainty 

principle-. This was done in the early days of QM, 
particularly because Einstein objected strongly to it. When 
Bohr demonstrated that to contradict it would lead to a 
contradiction of QM with even General relativity (using the 
thought experiment at right) his opposition collapsed- the 
principle is now universally accepted.

Uncertainty Principle for SPIN
We saw on page 4.28 that we spin exists in discrete values or ‘quantum 

numbers’.  The uncertainty principle is very simple for spin-1/2 systems. As 
described on p. 4.28, an “up” spin is a superposition of left and right oriented 
spins. In QM one writes, eg., for an “up” spin: 

Ψ+

 

∼  ( φ−>

 

+ φ<−

 

)

where the symbols  and mean spins oriented “left” and “right”
respectively. This means an equal probability of 50% of finding the spin up 
system in a left or right state. 

However this has a simple interpretation- there is an uncertainty principle 
for spin orientations. If we fix the orientation along one axis very tightly, then 
it becomes indeterminate in perpendicular directions. This is the analogue of 
the uncertainty principle governing position and momentum.

PCES  4.33

Bohr’s thought 
Experiment  



QUANTUM MEASUREMENTS:  I
One of the most difficult points in QM is the idea of the measurement. Here 

I give you a simple approach to this- which depends on the assumption that 
some BIG system is ultimately doing the measurement, and that it behaves 
classically. 

Essentially a measurement involves an interaction between the physical 
system of interest and a measuring apparatus.  This establishes a correlation 
between the state of the system before the measurement interaction, and the 
state of the apparatus afterwards. It is assumed that because the apparatus is 
classical, finding its state is then simple.

At left we see a simple example. We want to 
measure through which slit the particle passes. 
The 2-slit apparatus is set up so that it can move 
without friction between 2 rollers. If a particle 
goes through the bottom slit and back up to the 
screen, the plate containing the slits will recoil 
downwards. On the other hand it will recoil up if 
the particle goes through the upper slit. Then, by 
watching the motion of the plate containing the 
slits, we can see which slit the particle went 
through.

Actually this will destroy the interference 
pattern- see next slide.
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A 2-slit set-up where the plate with 
the slits can move up or down. Any
scattering of the particle going 
through a slit, changing its 
direction, means exchange of 
momentum with the plate- which 
then recoils. 



QUANTUM MEASUREMENTS: II
The interaction with the measuring device also 

has an important connection with the uncertainty 
principle. Consider a slightly different way of 
measuring through which slit the particle passes, 
looking at it with photons. Two points are crucial:

(i) To see which slit the particle goes through, we 
need photons of a short enough wavelength- if the 
wavelength is λ, we can’t resolve the position at a 
finer scale than this (this is why light microscopes 
cannot resolve detail smaller than the wavelength 
of light). 

However this light has a momentum, and in interacting with the particle it 
will give it a momentum kick of roughly the same size. As a result the particle 
acquires an uncertain momentum, so it no longer has a well-defined 
wavelength. If we work out the mathematical details we find the interference 
pattern is then smeared out completely because of this.

(ii) Actually this makes sense. If we can tell which slit the particle goes 
through, it follows logically that there can be no more interference pattern on 
the screen- interference only happens if the particle can go through both of 
them, without choosing a particular path.

Using a microscope to see which 
slit the particle goes through. The 
particle is seen if photons scatter 
off it (into a microscope). But this 
causes the particles to recoil. 
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ENTANGLEMENT between  QUANTUM SYSTEMS
Consider a system of an electron & positron ‘orbiting’

each other- the overlap of their 2 wave-functions means 
they will eventually mutually annihilate, with emission 
of 2 photons. These photons must have equal & opposite 
momenta & spin, because the original system had zero 
momentum and spin, & these 2 quantities are conserved. 

Such a state is shown at left. If we label the spin along 
the direction of photon propagation (usually called the 
‘helicity’) by + & - , the the state shown can be written as 

Ψ+- (1, 2)

 

=  φ+(1)  φ– (2) 

where particle 1 is moving up, and particle 2 down. 
However consider the state shown at right, which 

is: 
Ψ- + (1, 2)  =  φ– (1)  φ+ (2)

But QM uses all possible paths- so we can actually have 
a state like 

Ψ  ∼  (Ψ+ −

 

+ Ψ− + )    =    [ φ+

 

(1) φ−

 

(2)   +  φ−

 

(1) φ+

 

(2) ]

Now in this state each photon has no definite spin- BUT 
we do have a definite quantum state! The state is such 
that the 2 spins must be opposite- they are “entangled”.

Positronium 2 photons
in state  Ψ +  −

BELOW:  positronium
photons in state Ψ− + with 
photon 1 spinning clockwise 
along  photon direction, & 
photon 2 anticlockwise.   
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The   Einstein-Podolsky-Rosen (EPR)  Paradox

We can now explain this paradox fairly easily. Suppose we have a state of 2 
spins such that they must be opposite. We can write one such state as Ψ = | + −>
which is a simple notation meaning they are up/down. Another could be |+ −

 

>  
meaning they are down/up; and we could have  ( | +−>  + | −

 

+ > ) . These are the 
3 states talked about on the last slide.

Now we let the 2 spins separate by a large distance, & have 2 measuring 
systems to measure the spins at the 2 places. Suppose the measuring systems 
measure if the spins are up or down. Then if the 1st measuring system finds 
spin 1 is up, we KNOW spin 2 will be down- & vice-versa. Apparently spin 2 
must be then either up or down.

However now suppose at the very last instant we change our minds, & switch 
the 1st apparatus to measure whether spin 1 is or . Now if we find spin 1 
is we KNOW spin 2 is  ; and vice-versa. The spins and apparatus are 
so far apart that no signal can travel between them in the time after we change 
our mind (unless it goes faster than light!). And yet by suddenly switching the
1st apparatus, QM says we change the possible quantum states that spin 2 can
have. This is the EPR paradox (published in 1935), which led Einstein to argue
that QM was not a complete theory of Nature.   

!st detector, set to
measure the a spin 
state at angle  α

2nd detector, set to 
measure the spin 
state at angle  β
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BELL’s THEOREM  & INEQUALITIES  

JS Bell (1928-1990)
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It was a relatively unknown Irish physicist who underlined the really crucial point 
that lay behind the ideas of EPR.  What basically bothered Einstein was that QM 
seemed to be incompatible with any sensible notion of what ‘physical reality’ must 
be. How is it possible to say that, eg., the spin of the 2nd particle in the EPR has a is 
“real” (in EPR language, that it ‘corresponds to an element of physical reality’), if 
the state that we measure can be altered by changing the disposition of some 
measuring system that might be light years away?

What Bell showed can be summed up in ‘Bell’s theorem’:

“No LOCAL HIDDEN VARIABLE THEORY of any kind can reproduce 
all of the experimental predictions of Quantum Mechanics” (Bell, 1964)

What does this mean? A ‘hidden variable theory’ tries to explain the fact that QM only predicts 
probabilities by arguing that there is some unknown and random disturbance acting on quantum 
systems. A ‘local’ theory is one in which the state of a system is defined locally (ie., in one point or 
region of spacetime), and is also assumed to be influenced locally (ie., by other objects or fields in 
the same region). In a non-local theory events or processes elsewhere must be involved. The crucial 
point is that it is impossible to have non-locality and also satisfy special relativity, if the non-locality 
is caused by physical interactions. Essentially what Bell’s theorem is saying is that ‘realism’ (that the 
objects described by QM are objectively real) is incompatible with relativity.

Even more remarkably, Bell was able to QUANTIFY by how much the predictions of any local 
hidden variable theory would differ from QM- these are the famous ‘Bell Inequalities’. Thus it is 
basically shown how one can test in an experiment (next page) whether some of our most cherished 
ideas about physical reality are true- this is perhaps the first time that experiment has been used to
directly come to a conclusion about what are usually taken to be metaphysical questions!



ENTANGLEMENT EXPERIMENTS  with  PHOTONS PCES  4.39

The simplest way to look for entanglement- & at the 
same time test Bell’s inequalities- is to look at 
correlated pairs of photons.

Experiments have now been done in which the quantities measured on 2 separated but 
entangled systems, are varied separately & randomly- so quickly that no signal can pass 
between the 2 systems (page 4.37).   We can compare QM with “local hidden variable 
theories” (in which the probabilistic results of QM 
arise from ignorance of underlying deterministic 
variables, which are ‘local’, ie,, which describe 
individual systems). The results (Aspect et al., 1982) 
rule out ANY such theory in favour of QM.  A more 
recent experiment (right) has entangled huge 
numbers of atomic spins in 2 separate gas cylinders      

The experiments look at EPR pairs of photons which must 
have opposite polarisation.  The experiment measures the 
correlations between the polarisations of the 2 photons, with 
the angle between the 2 polarisers being varied (see figure on 
page 4.37).  Quantum Mechanics makes definite predictions 
about the angular dependence of these correlations. 

The 1st tests of quantum theory for entangled photons were 
done in the 1960’s. The results indicated the validity of QM, 
but communication between the 2 polarisers was not eliminated.



USING  ENTANGLEMENT  
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Ψ= α++ |+ +>  +  α+ −

 

|+ −>  + α− +

 

|−

 

+>  +  α− −

 

|−

 

−>

α+ + = |α+ +

 

| exp(iφ+ +

 

) 

What has been appreciated in the last 15 years is that the extraordinary property of entanglement 
can be used as a ‘resource’. To see why this is we consider a pair of entangled spins. Now if these were 
classical 2-state systems (of the kind used in a computer), they would exist in ONE of 4 possible 
states- these being  (11)  (10)  (01)  (00) .  Now the crucial difference in QM is that the general state is
written in the form:

This state is a superposition of the 4 possible states- not just one of them- with 4 different contributing 
Amplitudes, which can be varied. This gives us a much larger number of possible states than the 4 
possible classical states- meaning that much more information can be stored or processed by the 2 
quantum spins. For those of you with mathematical knowledge,  the information is not just stored in
the magnitude of the coefficients, but also in their PHASES:

This feature is at the heart of quantum computing, to be 
described later. A simpler application is to what is called 
QUANTUM TELEPORTATION. In this scheme a pair of 
photons or spins is prepared in an UNKNOWN entangled 
state, and one of each is sent to Bob & Alice. Neither 
observes their spin- instead, each of them lets it interact 
with another one of their own. Then Alice measures the 
state of her new pair (thereby destroying it), & sends the 
result to Bob (this is classical information). Bob can then 
manipulate his pair, based on this info, to exactly recreate 
the original entangled state. 

TELEPORTATION:  using an EPR source, 
Alice teleports a Quantum state to Bob. The 
Time axis is vertical, space axis horizontal 
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