faltered because of the lack of experiments, systematic observations, and the experimental methodology that came much later. But this is only very partly true - indeed, Alexandrian observational astronomy was remarkably accurate in its later stages, and almost obsessed with data-collecting and measurement. In reality the problem was deeper, at the theoretical level. Greek physics and astronomy were, almost inevitably, slaves of the philosophical framework forced on them by the Athenian philosophers (which itself reflected ideas going back to Pythagoras, Heraclitus, and Parmenides). The prevailing orthodoxy was essentially a geometric one, overly influenced by considerations of symmetry and abstract mathematical form. Totally lacking was a place for mechanics; there were no forces, no gravity, no understanding of dynamics in the modern sense. Concepts like the "void", or vacuum, or of 'force' in the more modern sense, of particles or atoms, were largely ignored because they did not fit the standard model.

In this way the models of Aristotle in natural philosophy and cosmology, or of Ptolemy in astronomy, conformed to the orthodox Greek ideal of what a theory should be. The ideas of Leucippus, Democritus, and Archimedes, did not so conform - and so although they did get a hearing, their influence was much less durable. Of course the orthodoxy was partly formed by philosophers like Aristotle, and there are various reasons for its more widespread acceptance (apart from the depth and breadth of his arguments). The ideas of the Atomists, for example, probably seemed just too outlandish to many Greeks, as well as saying less about the ethical issues that concerned most of them. Even though the atomistic ideas were partially resuscitated later, by the Epicureans, they never enjoyed the same popularity in the Roman world as the philosophy of the Stoics. This partly because the ethical ideas of the Stoics were more appealing to the Romans - but it is also because the Athenian ideas (due mostly to Plato and Aristotle), of what a theory of the natural world should look like, had by then been accepted by most Romans.

This point is very important - what is accepted as a valid theoretical framework, or what are accepted as the philosophical or conceptual underpinnings of such a theoretical framework, often depend on unspoken assumptions about what any kind of theory should look like. We are no freer from this kind of preconception today - it is simply that our idea of what a scientific theory should look like is now very different.

(1) EARLY DEVELOPMENT of GREEK ASTRONOMY

The story of Greek astronomy is of an increasingly detailed observational picture, developed hand in hand with more sophisticated mathematical methods and a theoretical framework based on these methods and on the observations. The best way to understand this is to look at the chronological development, concentrating on the main historical figures involved. In the course of this story we also encounter the two main cosmological ideas, involving celestial spheres, and the epicycle theory (for which also see the slides).

The early history, as discussed above, is one of daring ideas, which were later dropped in favour of an earth-centred epicycle theory. This early work did not appear in a vacuum - the Greeks relied much on observations of the Egyptians and the Baylonians, stretching back well over a thousand years. However we begin our story in the Greek golden age, at the time of Plato.

EUDOXUS of CNIDUS (408-355 BC): Eudoxus was born in Cnidus (on Resadiye peninsula, on the Black Sea, now in Turkey). He studied mathematics with Archytus in Tarentum, in Italy; Archytas was a follower of Pythagorean school of mathematics. While in Italy he visited Philiston in Sicily, and studies medecine with him. The problem of 'squaring the cube' was one which interested Archytas and it would be reasonable to suppose that Eudoxus's well-known interest in that problem was stimulated by his teacher. Other topics that it is probable that he learnt about from Archytas include number theory and the theory of music.

Eudoxus made his first visit to Athens at the age of 23, in the company of the physician Theomedon with the intention of studying at Plato's Academy, which had only been recently established. Eudoxus spent

Figure 1: The construction of Eudoxus. In (a) we see his idea of concentric celestial spheres turning around the earth - the figure shows 3 spheres but Eudoxus postulated 27 of them. Each planet was entrained to move between 2 adjacent spheres. The axes of rotation of the different spheres were not parallel. In (b) we see how a planet caught between 2 spheres rotating at different rates, and with axes along different directions, would end up moving in a 'hippopede' curve. In (c) the hippopede is stretched out by the motion of the other spheres, which cause the first two spheres to turn rapidly about the earth.
several months in Athens on this visit, and attended lectures on philosophy by Plato and other philosophers at the Academy. It appears that at some time during this period Plato and Eudoxus may have had a falling out. Eudoxus was quite poor and could only afford an apartment at Piraeus, the Athenian port. According to Heath, to attend Plato's lectures, he walked the 23 km there and back, each day.

Thereafter, reputedly with the help of financial aid from friends, he went to Egypt to learn astronomy with the priests at Heliopolis, and made astronomical observations from an observatory located between Heliopolis and Cercesura. From there Eudoxus travelled to Cyzicus, in northwestern Asia Minor on the south shore of the sea of Marmara. There he established his own School - this proved in the end to be quite popular, and he had many pupils.

In around 368 BC Eudoxus made a second visit to Athens accompanied by a number of his followers. It is hard to work out exactly what his relationship with Plato and the Academy were at this time. There is some evidence to suggest that Eudoxus had little respect for Plato's analytic ability, and it is easy to see why that might be - as a mathematician his abilities went far beyond those of Plato. It is also suggested that Plato was not entirely pleased to see how successful Eudoxus's School in Marmara had become.

Eudoxus later returned to his native Cnidus and there was acclaimed by the people who elected him to an important role in the legislature. However he continued his scholarly work, writing books and lecturing on theology, astronomy and meteorology.

He had built an observatory on Cnidus and we know that from there he observed the star Canopus. The observations made at his observatory in Cnidus, as well as those made at the observatory near Heliopolis, formed the basis of two books referred to by Hipparchus. These works were the "Mirror" and the "Phaenomena", which are thought by some scholars to be revisions of the same work. Hipparchus tells us that the works concerned the rising and setting of the constellations but unfortunately these books, as with all the other works of Eudoxus, have been lost.

He had one son, Aristagoras, and three daughters, Actis, Philtis and Delphis. At the age of 53, in 355 BC, he died in Cnidos, highly honored as a lawgiver.

As we saw in the notes on Greek mathematics, Eudoxus made important contributions to the post-

Pythagorean development of mathematics, and he was the best-known member of what later was called the "Athenian school" (although, as we have seen, he spent little time in Athens). His most lasting influence came from his planetary theory, published in his book "On velocities". This was based on spheres, possibly following Pythagoras's belief that the sphere was the most perfect shape. The theory consisted of 27 spheres, each sphere rotating about an axis through the centre of the Earth. The axis of rotation of each sphere was not fixed but was attached to the adjacent outer sphere, and so was itself rotating with the rotation of that sphere (see course slides). This led to a very complicated set of motions. Eudoxus observed that if two spheres rotate with constant, but opposite, angular velocity, and their axes are slightly tilted with respect to each other, then a point on the equator of the inner sphere describes a figure of eight curve. This curve was called a hippopede - it is shown in Figs. 1(b) and 1(c).

Eudoxus imagined a planet as the point following this curve; he then introduced a third sphere to correspond to the general motion of the planet against the background stars while the motion round the hippopede produced the observed periodic retrograde motion. This 3 -sphere subsystem was set into a 4th sphere, which yielded the daily rotation of the stars. The construction is complicated - by fiddling with the spheres, there relative orientations, and their relative angular velocities of rotation, once can approximately describe the apparent motion of the planets.

The Eudoxian planetary system was described by Aristotle in the "Metaphysics". It was recognized even then as a remarkable mathematical achievement. It is possible that Eudoxus used the spheres only as a computational device; however this was not the view of Aristotle, who assumed they were real. Certainly neither of them could have ever tried to test it against observational data - it would have failed the test. This is because the real motion of the planets proceeds not on circles but ellipses, and they do not move at a constant velocity along these ellipses. No construction involving spheres turning at a constant rate could have ever reproduced this.

ARISTARCHUS of SAMOS (310-230 BC: The career of Aristarchus came shortly after that of Euclid, and before that of Archimedes. He was a student of Strato of Lampsacus, who was head of Aristotle's Lyceum. However, it is not thought that Aristarchus studied with Strato in Athens but instead in Alexandria. Strato became head of the Lyceum at Alexandria in 287 BC and apparently Aristarchus studied with him shortly after then.

Very little is known of the life of Aristarchus. His only surviving work, entitled "On the Sizes and Distances of the Sun and Moon", provides the details of his remarkable geometric arguments, based on observation, whereby he concluded that
(i) the Sun was about 19 times as distant from the Earth as the Moon, and also has a diameter about 19 times that of the moon; and
(ii) That the sun lay at a distance 180 earth diameters from the earth (and hence, from (i) that the moon was at a distance of just under 10 earth diameters from us).

Now these estimates were badly wrong (in fact the distance of the sun is roughly 390 times the distance of the moon from us, and is at a mean distance of 11,726 earth diameters; and the moon is just over 30 earth diameters from us). However the fault in Aristarchus's estimates did not lie in his geometric reasoning, which was entirely correct, but in his complete lack of accurate instruments.

His method for getting his results was actually very ingenious. First, he noted what everybody knew, which was that the sun and moon appear to be almost exactly the same size in the sky. Aristarchus realized that this was pure coincidence, and that it implied that the ratio of the distances of the 2 objects had to be the same as the ratio of their diameters. It remained then to determine what this ratio was, and to determine the distance of one of the two from the earth. His method can be seen in Figs. 2(a) and 2(b), and relied on making 2 measurements - one of the angular size of the earth's shadow when it crosses the moon, and the other of the angle between the sun and the moon in the sky when the moon is exactly half-illuminated by the sun (ie., at half-moon phase). If one then knows the size of the earth, the rest follows.

He noted first that because the sun is not an infinite distance away, the shadows cast by both the moon and the earth in space would be cone-shaped. The apex of the cone in the case of the moon's shadow would

Figure 2: Some of the deductions made by the early Greeks about the size of the heavenly bodies, including the earth. In (a) we see the way shape of the earth's shadow in space depends on how far away the sun is the rays from a very distant sun are almost paralle, so that the diameter of the earth's shadow hardly varies as we move out to the moon, but the earth's shadow rapidly shrinks to a point for a nearby sun. In (b) we see how Aristarchus tried to measure the moon's distance by measureing the angle between the sun and moon in the sky at "half moon"; and in (c) we see the construction of Eratosthenes, for the measurement of the diameter of the earth, using shadows cast by vertical posts planted in 2 different places on the earth.
of the works in the Athenian library of Aristotle. Ptolemy II appointed Callimachus, the former tutor of Eratosthenes, as the second librarian. When Ptolemy III (Euergetes) succeeded his father in 245 BC , he hired Eratosthenes to come to Alexandria as the tutor of his son Philopator. On the death of Callimachus around 236 BC BC, Eratosthenes then became the third librarian at Alexandria, in the library in a temple of the Muses called the Mouseion. In this post he was a colleague of Archimedes.

Eratosthenes apparently had the reputation of being an all-round scholar, who had mastered many different areas of knowledge. Apparently he also had the nickname "Pentathlos", denoting an all-round athlete. In any case, he spent the rest of his career in Alexandria. He is said to have became blind in old age and to have committed suicide by starving himself.

His accomplishments were remarkably varied. In the artistic sphere his works include the poem "Hermes", inspired by astronomical ideas, as well as literary works on the theatre and on ethics. He also made major contributions to geography. He accurately mapped the route of the Nile to Khartoum, showing the two Ethiopian tributaries, and suggested that lakes were the source of the river. He was the first to correctly suggest that heavy rains sometimes fell in regions near the source of the river and that these would explain the flooding lower down. He also worked out a calendar that included leap years, and laid the foundations of a systematic chronography of the world when he tried to give the dates of literary and political events from the time of the siege of Troy.

His contributions to mathematics were very extensive, although we know about them almost entirely from commentaries by later writers. Some of his results appeared in a work called "Platonicus", in which he apparently studied problems in number theory, geometry, and musical theory; most notable of the contributions herein were his discussion of the problem of duplicating the cube. Another book written by Eratosthenes, "On means" is also lost, but was mentioned by Pappus as one of the great books of geometry. A remarkable contribution (described in the "Introduction to arithmetic" by Nicomedes) is his prime number sieve, the 'Sieve of Eratosthenes'. In modified form, this is still an important tool in number theory.

However what Eratosthenes is best known for is his astronomical work. On the observational side, he is remembered for his invention of the armillary sphere, around 255 BC ; this was a mechanical representation of the motion of the heavenly bodies, which was widely used until the invention of the orrery. He is also said to have compiled a star catalogue containing 675 stars

His most famous contribution to astronomy was his measurement of the diameter of the earth (see Fig. $2(\mathrm{c})$). His initial idea was based on his observation that the sun is directly overhead at noon in Cyrene in southern Egypt (now Aswan, the site of the famous dam) on the first day of summer. While visiting Cyrene, Eratosthenes apparently noticed that the noon sun reflected directly back from the water in the bottom of a well. Knowing that the earth was a sphere, he correctly reasoned that if he could determine the altitude of the noon sun at some other location on the first day of summer, AND if he knew the distance between these two locations, he could compute the circumference of the earth. The other location was Alexandria - the distance between these two is equivalent to 7° in angle, so tha tthe angle of the shadow cast at Alexandria was 7° off the vertical. Eratosthenes reasoned that since a full circle subtends 360°, the distance between Cyrene and Alexandria is a fraction $\frac{7}{360}$ of the circumference of the earth. The distance form Alexandria to Cyrene was known very accurately - so the circumference could then be calculated. His answer was accurate to roughly 1 per cent - a remarkable achievement.

Eratosthenes also measured the distance to the sun, giving the result as $804,000,000$ stadia, and the distance to the Moon as 780,000 stadia. Since 1 stadium is approximately 160 m , this means that he estimated the sun's distance as roughly $120,000,000 \mathrm{~km}$, and the moon's distance as roughly $120,000 \mathrm{~km}$ (the correct values are $149,000,000 \mathrm{~km}$ and $400,000 \mathrm{~km}$, respectively). He computed these distances using data obtained during lunar eclipses. Ptolemy tells us that Eratosthenes also measured the tilt of the Earth's axis with great accuracy, obtaining the value of $11 / 83$ of 180°, equivalent to $23^{\circ} 51^{\circ} 15$ " (the correct answer is roughly $23^{\circ} 30^{\circ}$.

The amazing accuracy of these results, obtained using naked eye observations, tells us that Eratosthenes must have been a superb observer with very accurate equipment at his disposal. Unfortunately we have little idea of what instruments he had.

(a)
(b)

Figure 3: The precession of the equinoxes, discovered by Hipparchus. This can be understood as a precession of the earth's axis of rotation, which occurs over a $25,000 \mathrm{yr}$ time period. The direction of the North pole in the sky with time is shown in (a). Currently this direction is close to Polaris, which we call the "pole star" for this reason. In 10,000 AD it will be much closer to Deneb, and in 14,000 AD much closer to the very bright star Vega. In (b) we show how the axis is precessing, as viewed from outside.

HIPPARCHUS of R H ODES (190-120 BC: Little is known of Hipparchus's life, but he is was born in Nicaea in Bithynia (now this town is called Iznik, on the eastern shore of Lake Iznik in north-western Turkey). Hipparchus is thus often referred to as Hipparchus of Nicaea or Hipparchus of Bithynia and was listed among the famous men of Bithynia by Strabo, the Greek geographer and historian. There are coins from Nicaea which depict Hipparchus sitting looking at a globe (see course slides) and his image appears on coins minted under five different Roman emperors between 138 AD and 253 AD.

So little is known of the life of Hipparchus that much of our knowledge of his movements comes from the observations that are attributed to him. Apart from those made in Niceea, there were those made from the north of the island of Rhodes, plus several made in Alexandria. Thus apparently Hipparchus was in Alexandria in 146 BC and in Rhodes near the end of his career in 127 BC and 126 BC. Only one work by Hipparchus has survived, his "Commentary on Aratus and Eudoxus", which is certainly not one of his major works.

Most of the information which we have about the work of Hipparchus comes from Ptolemy's "Almagest". Where one might hope for more information about Hipparchus himself would be in the commentaries on the "Almagest". There are two in particular by Theon of Alexandria and by Pappus, but these add little
information about Hipparchus. When Ptolemy refers to results of Hipparchus he usually assumes that the reader also has his original writings.

Nevertheless Hipparchus is considered by many to have been the greatest astronomical observer of preRenaissance times, if not the greatest overall astronomer of antiquity. He was the first Greek to give accurate quantitative models for the motion of the Sun and Moon, using records of observations going back many centuries, made by the Babylonians; he measured the lunar month to within an error of 1 second, and the year to an accuracy of 6 minutes. In the course of doing this he compiled trigonometric tables, and not only developed simple trigonometric ideas, but also solved some problems of spherical trigonometry. Using his solar and lunar theory and his knowledge of trigonometry, he may have been the first to develop a reliable method to predict solar eclipses; he also attempted to measure the distances of the sun and moon. His other best-known results were the discovery of the precession of the equinoxes (ie., of the earth's axis - see Fig. 3), and the compilation of the first comprehensive and accurate star atlas (containing the measured positions of 850 stars). His value of the annual precession of the equinoxes was $46^{\prime \prime}$ (the actual value is $50.26^{\prime \prime}$), much better than the figure of 36 " that Ptolemy derived nearly 300 years later! To do all this he developed or invented several new instruments, including the astrolabe, and possibly also the armillary sphere. On the theoretical side he also developed the epicycle as first formulated by Apollonius.

It is interesting to look in a little more detail at his best-known discovery, that of the precession of the equinoxes. This is seen as the slow drift of the position on the celestial sphere of the points at which the ecliptic crosses the celestial equator. His discovery came from his attempts to calculate an accurate value for the length of the year. One can define the 'year' in 2 ways, viz., (i) the time it takes the sun to return to the same place amongst the fixed stars (the sidereal year); or (ii) the length of time before the seasons repeat ie., to pass once between the equinoxes (the tropical year).

To calculate the length of these two years Hipparchus required many years of observations. He used Babylonian data, along with his own, to derive a value for the tropical year of 365 days, 5 hrs , and 50 minutes (the actual value is 365 days, $5 \mathrm{hrs}, 48$ minutes and 46 seconds, ie., 1 minute and 14 seconds less). He then checked this against observations of equinoxes and solstices, using both his own observations and those of Aristarchus in 280 BC and Meton in 432 BC . His calculation of the length of the sidereal year, again with the help of older Babylonian data, gave a result of 365 days, 6 hrs, and 10 minutes.

(2) LATER DEVELOPMENTS: The PTOLEMAIC THEORY

We now shift to Alexandria in very different times - by the 2nd century AD, Ancient Greece itself was a distant memory, and the Roman empire was at the height of its power. It had taken over most of the regions conquered by Alexander, and added enormously to them, particularly in what we now call Western Europe.

However intellectual attitudes were very different in Roman times - rather than adding to the Greek achievements, the Romans preferred to consolidate them. Innovative in engineering, and in warfare, the attitudes in the Roman empire bore more than a slight resemblance to those prevailing in the USA or in Ottawa today. There was a disregard for radical intellectual innovation prevailed amongst those in power, and amongst most of the populace, except in a few quarters where intellectuals and artists looked back to the Greeks for inspiration.

In the same way, astronomy was characterized by a real development in observational capabilities, but almost no change in the underlying theoretical ideas used to understand them. Many key ideas were forgotten, and in the end, those that survived were not the best of those that had been developed in earlier times.
(a) Life of CLAUDIUS PTOLEM Y (85-165AD: We know very little of Ptolemy's life. His name, Claudius Ptolemy, is a mixture of the Greek Egyptian 'Ptolemy' (the name taken by the rulers of Egypt starting from the annexation of Egypt by Alexander the Great - the name was quite common among the

