
Tutorial 3: The Transverse Ising Model

In this tutorial we are going to study a particular quantum spin system. So far,
we have been considering classical spin systems, particularly the Ising model. The
reason why we call the Ising model the “classical Ising model” is that a given spin
degree of freedom, σ, has only two states, σ = 1 and σ = −1. There is no concept of
a quantum superposition of those two states. In a quantum Ising model, in the other
hand, a single spin could take up any of an infinite array of states containing quantum
superpositions of the spin up state and the spin down state. Such a quantum spin,
whose states are quantum superpositions of two basis states, is called a qubit. Each
spin in a quantum Ising model is a qubit.

In the quantum Ising model, the spin is an operator which has eigenvalues +1
and −1. We can write this operator for one of the spins in a basis where it is diagonal
as

σ3 =

(
1 0
0 −1

)
(1)

In this basis the eigenvalues are just the unit vectors

σ3

(
1
0

)
=

(
1
0

)
, σ3

(
0
1

)
= −

(
0
1

)
(2)

States in the two-dimensional Hilbert space if this single qubit have the generic form

ψ = ψ1

(
1
0

)
+ ψ2

(
0
1

)
=

(
ψ1

ψ2

)
(3)

where ψ1 and ψ2 are two complex numbers obeying |ψ1|2 + |ψ2|2 = 1.
We could also call the state of a single spin a complex vector ψa and the operation

of the spin operator σ3 could be defined as

[σ3ψ]a ≡
2∑
b=1

σ3
abψb ≡ σ3

abψb
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where we will use the summation convention where repeated indices are automatically
assumed to be summed over their range. The eigenvectors of σ3 in this notation are
just the unit vectors

ê1a = δ1a corresponds to

(
1
0

)
, ê2a = δ2a corresponds to

(
0
1

)
We shall consider an assembly of a large number of qubits, each of which reside at

a particular position. We will focus on the case where they lie equally spaced along a
one dimensional chain whose sites we shall label by the numbers n = 1, 2, ..., N . As
usual, we will take the limit where N is large. The quantum state of this assembly
of qubits must have the form

ψa1a2...aN

with one index for each individual qubit in the chain.
The spin operator for the qubit that is located at point n in the chain is the 2×2

matrix which we denote by σ3
n. It is the matrix whose eigenvalues are +1 and −1

corresponding to the two spin states of that n’th qubit. There is an independent
matrix for each value of n. Its action on the quantum state is as

[σ3
nψ]a1a2...aN ≡ (σ3)anbnψa1a2...bn...aN

1. Confirm that the spin operators for different qubits commute with each other,
that is, that

[σ3
mσ

3
nψ]a1a2...aN − [σ3

nσ
3
mψ]a1a2...aN = 0

Since the indices a1, ...aN each take on 2 values, the array ψa1a2...aN contains 2N

complex numbers and it is natural to think of it as a vector in a 2N -dimensional
complex vector space, the finite dimensional Hilbert space of the quantum spin
chain. This vector space has a natural inner product which, for two state
vectors, ψa1a2...aN and ψ̃a1a2...aN , is given by the complex number

(ψ̃|ψ) ≡ ψ̃∗a1a2...aNψa1a2...aN

This inner product can be used to normalize the states so that

ψ∗a1a2...aNψa1a2...aN = 1

We could also introduce the Ising model Hamiltonian for the spin chain (with-
out the magnetic field)

HI = −J
N−1∑
n=1

σ3
nσ

3
n+1 (4)
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This Hamiltonian is now an operator which operates on quantum states by
virtue of the fact that the σ3

n’s that it is constructed from are operators.

[HIψ]a1...aN = −J
N−1∑
n=1

(σ3)anbn(σ3)an+1bn+1ψa1...bnb)n+1...aN

It is also clear that it has the same eigenvalues as the classical Ising model
Hamiltonian has energies, one for each set of eigenvalues of the σ3

n’s, which are
in one-to-one correspondence with the set of all classical spin configurations.
Thus the quantum Ising Hamiltonian in equation (4) has precisely the same
eigenvalues with the same multiplicities as the energy states of the classical
Ising model Hamiltonian.

2. Show that the two ground states of the Hamiltonian in equation (4) are

ψ0+
a1a2...aN

= e1a1e
1
a2
. . . e1aN (5)

and

ψ0−
a1a2...aN

= e2a1e
2
a2
. . . e2aN (6)

and that the ground state energy is

U = −(N − 1)J

in each case.

3. Show that the magnetization, defined as the quantum expectation value in the
ground state,

M ≡ (Ψ|
N∑
n=1

σ3
n|Ψ)

is given by
M = N and M = −N

for each of two states, respectively

The degeneracy of the two ground states is due to the fact that they transform
into each other under a symmetry of the Ising model Hamiltonian called Z2

symmetry. This symmetry maps each spin into its negative,

Z2 : σ3
n → −σ3

n , ∀n
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In the quantum Ising model, there exists a unitary operator U (an operator
obeying UU † = 1) which implements this symmetry transformation,

Uσ3
nU
† = −σ3

n , ∀n (7)

and the Hamiltonian is invariant

UHIU
† = HI (8)

4. Find a unitary operator U which has the properties given in equations (7) and
(8). As as note of caution, there is more than one solution to this problem.
At this point, U is not unique.

So far, the classical and the quantum Ising models are very similar. In fact,
if we constructed the thermodynamic partition function by summing over all
of the classical spin states as we usually do, we would get exactly the same
answer as if we found the quantum Ising model partition function by taking a
trace of the Boltzmann distribution

Z[T,B,N ] = Tre−HI/kBT (9)

The reason for this is that the trace of a Hermitian matrix can be taken to
be the sum over its eigenvalues and as we have already noted, the eigenvalues
of the Hamiltonian are exactly the same, with the same multiplicities as the
classical energies, the values of the classical Hamiltonian for each configuration
of the spins. The free energy of the quantum system would therefore also be
identical to the one that we have studied for the classical model. This helps
us for the one-dimensional case since we had an exact solution for the classical
model. We saw that that classical model had a single critical point. It exhibited
a first order phase transition at zero temperature, that is at the critical point
(T,B) = (0, 0).

Even though it has this similarity with the classical Ising model, there are
some very big differences between the quantum and the classical models. This
is due to the fact that, in the quantum theory, one can take superpositions
of quantum states to find other quantum states which have no analog in the
classical theory. One consequence would be Schrödinger cat states which are
superpositions of the two ground states (5) and (6),

ψ0
a1a2...aN

(α, β) = αψ0+
a1a2...aN

+ βψ0−
a1a2...aN

, |α2|+ |β|2 = 1
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Any of these states is a logical possibility. However, any measurement of any
one of the N observables σ3

n that we have studied so far will collapse the wave-
function to one or the other of the ground states, psi0+a1a2...aN or psi0−a1a2...aN in
equations (5) and (6).

One other interesting fact about the quantum Ising model ground state that
we have found is that, both of the states psi0+a1a2...aN or psi0−a1a2...aN are simple
products of the states of each spin. In the quantum parlance, in these states,
the individual spins in the spin chain are not entangled. On the other hand,
in either ground state, the spins are highly correlated. If one knows that the
system is in its ground state and if one measures the polarization of any one
of the spins, say the first one in the chain, σ3

1, and finds the value +1 then
one knows with certainty that a subsequent measurement of the polarization
of any other spin will also yield +1. We would therefore call this a “strongly
correlated state”.

Another big difference between the classical and the quantum models is the
presence of additional observables. To find some additional observables, con-
sider the 2× 2 Hermitian matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(10)

We can think of these as operators which operate on the state of a single spin.
One of them, σ3, already has been used above. The others are also possible
observables.

The matrices, σ1, σ2, σ3 are called the Pauli matrices. They are often used to
describe the spin degree of freedom of the electron, for example. They obey
the commutator algebra

[
σi, σj

]
=

3∑
k=1

2iεijkσk (11)

and the anti-commutator algebra{
σi, σj

}
= 2δij (12)

We will think of them as operators in that they act on two-component state

vectors |ψ >=

[
α
β

]
by matrix multiplication.
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If we use the Pauli matrices as operators which can act on any of the spins in
the spin chain, we should add a label n to the matrices which act on the n’th
spin, so that they are now denoted σin. This label tells us which spin they act
on. The action of σin on a quantum state is defined by

[σinψ]a1a2...aN ≡ σianbnψa1a2...bn...aN

5. Show that the spin operators obey the algebra

[
σim, σ

j
n

]
=

3∑
k=1

2iεijkσknδmn (13)

To see how we can make use of these additional operators, let us consider an
alternative but very simple model of a spin chain where the Hamiltonian is

Hh = −h
N∑
n=1

σ1
n (14)

This Hamiltonian simply serves to polarize each spin so that it is oriented in
the same direction as ~h = (h, 0, 0).

6. Show that the lowest energy eigenstate of the Hamiltonian in equation (14) is
given by

Ψ0→
a1a2...aN

=
1

2N/2
(e1 + e2)a1(e

1 + e2)a2 . . . (e
1 + e2)aN (15)

if h > 0 and

Ψ0←
a1a2...aN

=
1

2N/2
(e1 − e2)a1(e1 − e2)a2 . . . (e1 − e2)aN (16)

if h < 0 and that the ground state energy is

U = −N |h|

We see that the ground state energy is a singular function of h. If this were a
free energy – and in fact when referring to the ground state of the system the
internal energy U is the zero temperature limit if the free energy – we would
say that this singular behaviour of the free energy is indicative of a first order
phase transition occurring at h = 0. This is probably the simplest possible
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example of a “quantum phase transition”. The term quantum phase transition
is defined as the phenomenon where a major re-structuring of the ground state
wave-function of a quantum mechanical system which occurs as a parameter
of the Hamiltonian of the system is varied. In this case the parameter is h
and, as h is increased from negative to positive values, when it passes through
zero the ground state of the system changes from Ψ0←

a1a2...aN
to Ψ0→

a1a2...aN
given

in equations (16) and (15).

Now, let us construct a more sophisticated model with the Hamiltonian

H = HI +Hh

= −J
N−1∑
n=1

σ3
nσ

3
n+1 − h

N∑
n=1

σ1
n (17)

The first term is just the usual Ising model Hamiltonian, but with quantum
spins replacing the classical spins. The second term is called the “transverse
coupling”. Sometimes the model with both of these terms is called the “trans-
verse Ising model”. We will be able to find an exact solution of this model.
However, first, it is illuminating to study it in some limits.

The limit h >> J:

In the following we will assume that both h and J are positive real numbers.
Let us consider the limit where h >> J , where its ground state should be
approximately that of Hh, that is, the state ψ0→

a1a2...aN
that is given in equation

(15). We could then estimate the effects of the HI-term in the Hamiltonian
using perturbation theory.

7. Use Rayleigh-Schrödinger (time-independent quantum mechanical) perturba-
tion theory to show that the ground state energy density u = U/N becomes

u = −h
(

1 +
J2

4h2
+ . . .

)
(18)

where we have assumed that N >> 1. Here, the ellipses stand for terms of
order J4/h4 and higher.

8. Show that the magnetization density M that is given by the expectation value

M ≡<
N∑
n=1

σ3
n > (19)
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vanishes, both in the zeroth order (its expectation value in the state ψ0→
a1a2...aN

)
and to the order J2/h2 of perturbation theory. Can you argue that it vanishes
to all orders?

The limit J >> h:

We can also study the ground state of the quantum spin chain governed by
the Hamiltonian in equation (17) in the limit where J >> h. In that case,
it should be well approximated by the ground state of HI which must be one
of the two ordered states in equations (5) and (6). Then we could begin with
either one of them, and we could study corrections due to the presence of the
Hh term in the Hamiltonian using quantum mechanical perturbation theory.

9. Show that, if we consider the ordered ground state given in equation (5) as the
leading contribution, the finding the the ground state to the leading order in
an expansion in the small parameter h/J , the leading correction to the ground
state energy density is

u = −J
(

1 +
h2

4J2
+ . . .

)
(20)

and the leading correction to the magnetization density is

m = 1− h2

4J2
+ . . . (21)

Can you argue that, if we had begun with the other state, given in equation
(6), the energy density would have the same expression as in equation (20)
and the magnetization would differ from the one quoted in equation (21) by
an overall minus sign.

Between these limits, h << J and h >> J , the nature of the ground state
must change. When J >> h there are two ground states, with opposite signs
of magnetization. When h >> J there is a single ground state with zero
magnetization. The transverse Ising model is interesting because it exhibits a
second order “quantum phase transition” at a critical value of h/J which we will
find by solving the model exactly. Here, a doublet of degenerate ground states,
each with nonzero spontaneous magnetization must merge to form a unique
ground state with zero magnetization. The quantum phase transition is of
“second order” because the ground state energy, as a function of the parameter
which is being varied to find the phase transition, has a discontinuous second
derivative.
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There is a Z2 symmetry which is spontaneously broken by the ordered states
(5) and (6). It is associated with a unitary (and Hermitian) matrix which we
can write explicitly as

K ≡
N∏
n=1

σ1
n , K = K† , K2 = I (22)

Since

Kσ3
nK = −σ3

n , ∀n (23)

Kσ1
nK = σ1

n , ∀n (24)

the K matrix implements a symmetry transformation in that it commutes with
the Hamiltonian

KHK = H (25)

This tells us that, if a state vector ψa1a1...aN is an eigenstate of the Hamiltonian
with eigenvalue E,

Hψ = Eψ

then

[Kψ]a1a1...aN = Ka1a2...an;b1b2...bNψb1b2...bN = σ1
a1b1

σ2
a2b2

. . . σ1
aN bN

ψb1b2...bN

is also an eigenstate of the Hamiltonian with the same eigenvalue E

H Kψ = E Kψ

Then, since K2 = 1, there are two possibilities:

• Kψ = ψ or Kψ = −ψ. The ground state is a singlet under the Z2

transformation.

• Kψ is not proportional to ψ and the set of two vector {ψ, Kψ} forms a
doublet of two degenerate eigenstates, both having the same energy E.

In the solutions that we have been discussing for limits of the transverse Ising
model, both of these behaviours occur. In the limit J >> h, there was a pair
of degenerate ground states (5) and (6). It is easy to check that they transform
into each other under Z2 and they therefore form a Z2 doublet. This is the
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case of spontaneously broken Z2 symmetry and the appearance of ferromagnetic
order.

On the other hand, in the h >> J limit, we found that there was a single
ground state ψ0→ given in equation (15). It is easy to check that the ground
state there is invariant under the Z2 transformation, Kψ0→ = Ψ0→, that is, it
is indeed a singlet.

This means that, in this transverse Ising model, if we begin with h = 0, and
we then turn on h and increase it from the h << J regime the ground state
must change from a doublet of Z2 at small h/J to a singlet of Z2 at large h/J .
This transition is a phase transition and the value of h/J at which it happens
is a critical point.

In order to solve the transverse Ising model, we have to begin by examining
the spin algebra. Let us look at the spins on a single site, ~σn. For simplicity of
notation, for the moment, we will omit the subscript n. This is a set of three
two-by-two matrices. Let us consider the following linear combinations of them

σ+ =
1

2

[
σ2 + iσ3

]
σ− =

1

2

[
σ2 − iσ3

]
10. Show that the matrices σ± obey

σ+σ+ = 0

σ−σ− = 0{
σ+, σ−

}
≡ σ+σ− + σ−σ+ = 1

σ1 = 2σ+σ− − 1 = [σ+, σ−]

Let us now rename these spins as the symbols

a† ≡ σ+ , a ≡ σ− (26)

The reason for this renaming is that the operators a† = σ+ and a = σ− behave
like the creation and annihilation operators of a Fermionic oscillator. We call
it “fermionic” since their algebra is anti-commuting rather than commuting.
They obey the algebraic identities

a2 = 0 , a†2 = 0 ,
{
a, a†

}
= 1 (27)
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We have also shown that σ1 = 2a†a − 1 = [a†, a] is related to the number
operator for the fermionic oscillator, a†a.

The states upon which these fermion operators operate on are easy to construct.
(Of course, there are identical to the states that the spin operators for the
qubit operate on. This is just a different notation for them.) We begin with a
“vacuum”, |0 >, which is annihilated by the annihilation operator,

a|0 >= 0 , < 0|a† = 0 , < 0|0 >= 1

Then, we create an excited state by operating the creation operator on the
vacuum state,

|1 >= a†|0 >

We note that, since a†2 = 0, there are no more excited states. We can annihilate
the excitation with the annihilation operator

a|1 >= |0 >

The basis for the Hilbert space is then the set of vectors two

{|0 >, |1 >}

and a generic state is a superposition of them,1

|ψ >= α|0 > +β|1 > , |α|2 + |β|2 = 1

The Fermionic re-labeling of the spin variables is interesting. It is called the
fermion representation of a single qubit. However, we are eventually interested
in a multi-qubit system and, so far, the fermionic description is incomplete. If
we restore the site indices, we see that the fermions with the same site labels
anticommute,

{
a†n, an

}
= 1, as fermion oscillator variables should do, On the

other hand, when the site labels are different, if m 6= n the operators that

1Here the complex numbers α and β parameterize the generic quantum state. If we use the
fact that the overall phase of the state is arbitrary to make α a real number, we can solve the
normalization constraint by setting

α = cos θ , β = sin θeiφ , 0 ≤ θ ≤ π − π < φ ≤ π

where one can think of (θ, φ) as coordinates of the unit 2-sphere, the Bloch sphere which parame-
terizes the states of a single qubit.
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we have constructed commute with each other,
[
a†m, an

]
= 0 rather than anti-

commute. This means that they are not really fermions yet. Fermion operators
associated with different sites should anti-commute with each other. So the
question is, can they be further re-defined so that they are really fermions?

The answer to this question is yes. In order to do this, we will consider an
open spin chain with open boundary conditions – we do not fix the states of
the qubits at the ends of the chain. Then, consider the following operators

a1 = σ−1 , an = σ1
1σ

1
2 . . . σ

1
n−1 σ

−
n (28)

a†1 = σ+
1 , a†n = σ1

1σ
1
2 . . . σ

1
n−1 σ

+
n (29)

∀n = 2, 3, ..., N

This is called a Jordan-Wigner transformation. It is commonly used in quan-
tum information theory as a transformation which turns qubits into fermions
or fermions into qubits.

11. Show that, with the above definition,

{am, an} = 0 , ∀m,n{
a†m, a

†
n

}
= 0 , ∀m,n{

am, a
†
n

}
= δmn , ∀m,n

Now, a†m and an have the correct anti-commutation relations to be the cre-
ation and annihilation operators for a fermionic excitation at site m and n,
respectively. The correct anti-commutation relations guarantee that the wave
function

a†n1
a†n2

. . . a†nk
|0 >

is totally antisymmetric in the positions n1, n2, ..., nk, as it should be to be a
wave-function of a system of identical and indistinguishable fermions.

12. Show that the inverse of the Jordan-Winger transformation is

σ−1 = a1, σ
+
1 = a†1 (30)

σ1
n = [a†n, an] (31)

and, for n > 1,

σ−n = [a†1, a1] . . . [a
†
n−1, an−1]an (32)

σ+
n = [a†1, a1] . . . [a

†
n−1, an−1]a

†
n (33)
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13. By plugging the Jordan-Wigner transformed spins into the Hamiltonian, show
that, in terms of the Fermion creation and annihilation operators, the Hamil-
tonian takes the form

H = J
N−1∑
n=1

(a†n + an)(a†n+1 − an+1) + h
N∑
n=1

[a†n, an] (34)

Let us begin by solving the limit where h >> J . In that limit, the Hamiltonian
is approximately equal to

h >> J : H = −Nh+ 2h
N∑
n=1

a†nan (35)

which is already diagonal. The fermion vacuum, defined by

an|0 >= 1 , < 0|a†n = 0 ∀n , < 0|0 >= 1 (36)

is the ground state with the ground state energy U = −Nh and the excited
states

a†n1
a†n2

. . . a†nk
|0 >

which have k excited fermions. There excited states have energy equal to
2hk −Nh there are N !/k!(N − k)! states with this energy.

Now, let us consider the other limit, where J >> h and the Ising model dom-
inates. There, it is convenient to re-define the fermion variables once again,
This Hamiltonian is quadratic in the Fermion operators. It has an interest-
ing presentation using Majorana Fermions. Let us define the basic Majorana
fermion variables as

βn = an + a†n , γn = −i(an − a†n) (37)

14. Show that the Majorana fermions obey the equations

β†n = βn , γ2n = 1

{γm, γn} = 2δm,n , {βm, βn} = 2δm,n , {γm, βn} = 0 (38)

In terms of these “Majorana fermions”, the Hamiltonian has a very simple form

H = −J
N−1∑
n=1

iβnγn+1 + h
N∑
N=1

iβnγn (39)
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In the J >> h limit, properties of the system must be governed by the first
term in the Hamiltonian in equation (40),

HI = −J
N−1∑
n=1

iβnγn+1 = −iJβ2γ3 − iJβ3γ4 + . . .− iJβN−1γN (40)

The first thing to note is the interesting fact that βN and α1 do not appear
in HI at all. These “edge modes” therefore commute with HI and we will
see shortly that their presence indicates a degeneracy of the energy spectrum.2

Also, we note that each combination of βn and γn+1 appear only once in the
operator iβnγn+1 that corresponds to the link of the chain that connects site
n and site n + 1. To make this term really simple, we could replace equation
(37) with

βn = ãn + ã†n , γn+1 = i(ãn − ã†n) (41)

where we can confirm that

{ãm, ã†n} = δmn {ãm, ãn} = 0 {ã†m, ã†n} = δmn (42)

15. Show that, with this replacement,

−iβnγn+1 = (ãn + ã†n)(ãn − ã†n) = 2ã†nãn − 1 (43)

and the HI is

HI = −J(N − 1) + 2J
N−1∑
n=1

ã†nãn (44)

There are also the left-over operators γ1 and βN which commute with HI and
with which we could combine to make the operators

βN = ã0 + ã†0 , γ1 = i(ã0 − ã†0) (45)

which also commute with HI .

The eigenstates of HI begin with a vacuum state |0̃ > with the properties

ãn|0̃ >= 0 , < 0|ã†n = 0 , < 0̃|0̃ >= 1 , n = 0, 1, 2, ..., N − 1 (46)

2This is the degeneracy due to the fact that the ground state in this limit should be a doublet
under the Z2 transformation.
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and two towers of excited states

α̃†n1
α̃†n2

. . . α̃†nk
|0 > α̃†n1

α̃†n2
. . . α̃†nk

α̃†0|0̃ > (47)

which both have energy −J(N − 1) + 2Jk.

Generally the ground states |0̃ > and ã†0|0̃ > are Schrödinger cat-like super-
positions of the ferromagnetic states. To see this, we can reconstruct the spin
operator σ3

1 for the first spin in the spin chain. It is given by σ3
1 = α̃0 + α̃†0

which has eigenstates

σ3
1

1√
2

(1 + α̃†0)|0̃ >=
1√
2

(1 + α̃†0)|0̃ > , σ3
1

1√
2

(1− α̃†0)|0̃ >= − 1√
2

(1− α̃†0)|0̃ >

A measurement of the orientation of the first spin in the spin chain will collapse
the state of the entire spin system to one of these two ferromagnetic states which
are, in this language, 1√

2
(1 + α̃†0)|0̃ > corresponding to ψ0+ in equation (5) and

1√
2
(1− α̃†0)|0̃ > which is identical to ψ0− in equation (6).

Now, let us restore the transverse coupling and return to the full Hamiltonian
(39). The general solution for the spectrum of this Hamiltonian can be found,
however, imposing the boundary conditions is somewhat complicated. The
problem simplifies in the limit where the number of spins, N , is taken to infinity.
In the spirit of focusing on behaviour of spins that are far from either of the
boundaries, we put both ends of the chain to infinity so that the Hamiltonian
becomes

H = −J
∞∑

n=−∞

iβnγn+1 + h
∞∑

n=−∞

iβnγn (48)

Before we discuss how one might solve this problem, let us observe that it
exhibits a version of Krammers-Wannier duality.

16. Show that, if we relabel the fermion variables as

βn = γ̂n , γn = β̂n−1 (49)

the Hamiltonian becomes

H = −h
∞∑

n=−∞

iβ̂nγ̂n+1 + J

∞∑
n=−∞

iβ̂nγ̂n (50)
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Since the change of variables in equation (49) is a canonical transformation3

the new Hamiltonian (50) is identical in structure to the old Hamiltonian (48),
if we also interchange the two parameters, J ↔ h.

This is Krammers-Wannier duality for this model. It means that the J >> h
and the J << h solutions will be identical in structure. There is a one-to-one
mapping of all of the states and their energies in one case to all of the states
and energies in the other case. In particular, we might expect that the ground
state energy is invariant under the duality transformation, that is, that

U(J, h) = U(h, J) (51)

Moreover, the duality tells us that the phase transition between the ferromag-
netic and the paramagnetic phases of this model must happen at the self-dual
point, that is, the critical point occurs as J = h. We will see that these features
are indeed there shortly when we solve the model exactly.

We can solve for the spectrum of the Hamiltonian in equation (48) by writing
down the Hamilton equations of motion for the Majorana variables,

i~β̇n = [βn, H] = −2iJγn+1 + 2ihγn (52)

i~γ̇n = [γn, H] = 2iJγn−1 − 2ihγn (53)

We can solve these equations using the ansatz(
βn
γn

)
=

(
β(k)
γ(k)

)
eikn−iE(k)t/~ (54)

where k ∈ (−π, π], the Brillouin zone of the one-dimensional lattice. Then the
equations become(

E(k) 2iJeik − 2ih
−2iJe−ik + 2ih E(k)

)(
β(k)
γ(k)

)
= 0 (55)

17. Show that the energy spectrum E(k) consists of two bands and that the energies
and wave-functions of each band are given by

E+(k) = ω(k) , ω(k) = 2
√

(J − h)2 + 4Jh sin2(k/2) (56)(
β(k)
γ(k)

)
=

1√
4π

(
1

2iJe−ik−2ih
ω(k)

)
(57)

3The reader might want to confirm that the anti-commutator algebra of the new operators is
identical to the anti-commutator algebra of the old operators.
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and

E(k) = −ω(k) (58)(
β(k)
γ(k)

)
=

1√
4π

(
1

−2iJe−ik−2ih
ω(k)

)
(59)

Using this solution, we can write

βn(t) =

∫ π

−π

dk√
4π

{
eikn−iω(k)t/~b(k) + e−ikn+iω(k)t/~b†(k)

}
γn(t) =

∫ π

−π

dk√
π

{
iJe−ik − ih

ω(k)
eikn−iω(k)t/~b(k)− iJeik − ih

ω(k)
e−ipn+iω(k)t/~b†(k)

}
It is straightforward if tedious to confirm that the variables b(k) and b†(k) have
the anti-commutator algebra

{b(k), b†(`)} = δ(k − `) , {b(k), b(`)} = 0 , {b†(k), b†(`)} = 0 (60)

and the Hamiltonian takes the form

H = U +

∫ π

−π
dk 2

√
(J − h)2 + 4Jh sin2(k/2) b†(k)b(k) (61)

U = −N
∫ π

−π

dk

2π

√
(J − h)2 + 4Jh sin2(k/2) (62)

where U is the ground state energy and we can think of it as the zero temper-
ature limit of the thermodynamic energy. The ground state of this system is
the one without any fermion excitations, |0 > which obeys

b(k)|0 >= 0 , < 0|b†(k) = 0 ∀k, < 0|0 >= 1

and
H|0 = U |0 >

The excited states
b†(k1) . . . b

†(kq)|0 >
have energy

E =
∑
i

2
√

(J − h)2 + 4Jh sin2(ki/2)
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Now, there is a gap in the spectrum between the energy of the ground state
and the energy of the first excited state which is b†(k = 0)|0 >. That gap is
∆E = 2|J −h|. This gap closes at the phase transition where J → h. The fact
that the gap closes is the source of non-analyticity there. For J ∼ h

u ∼ (J − h)2 ln |J − h|

It is easy to check that Taylor expanding U(J, h) in either h or J reproduces
the internal energies and the corrections to the internal energies of the J >> h
and the h >> J limits that we have already examined.

The behaviour of the internal energy in the vicinity of the phase transition can
be used to extract the critical exponent for the specific heat, which turns out
to be identical to mean field theory. The scaling of the magnetization and the
magnetic susceptibility in the critical regime are much more difficult to find as
the magnetization density is a complicated object in the fermionic language.
These have been studies in sufficient detail to extract their critical exponents
and the exponents turn out to differ significantly from mean field theory. In fact
they are the critical exponents of the two dimensional Ising model which must
therefore be in the same universality class as this transverse one-dimensional
Ising model. A summary of the critical exponents is:

α = 0 , β =
1

8
, γ =

7

4
, δ = 15 , η =

1

4
, ν = 1 (63)
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