
Physics 503 Problem Set 5

Solutions

1. If we raise fermions from the highest nm occupied levels in the ground state by m steps this increases the energy
by (2π/L)nmm since it is equivalent to raising each of nm fermions by m steps. (See the figure for an example.) Note
that it is possible to make this move without double occuping any levels, which would be disallowed by the Pauli
principle. The resulting state now has m unoccupied levels below the cluster of nm occupied ones. Now we may safely
raise nm−1 fermions from below these unoccupied levels up by m − 1 steps partially filling in the gap from the first
move. This never violates the Pauli principle due to to the available m unoccupied levels. Next we may move nm−2

fermions by m − 2 levels, etc. until finally moving n1 fermions up only one level. This construction always gives an
allowed state (not violating the Pauli principle). The starting point m ≥ 0 is arbitrary. Summing up the energy from
each “move”, we see that the total energy is:

E − E0 = (2π/L)

∞∑

m=1

mnm. (1)

It can also be seen to give the most general multiple particle-hole excited state for the right branch only. This follows
because this construction can give an arbitrary pattern of occupied and unoccupied levels. An arbitrary pattern
consists, counting down from the highest occupied state, of some number of occupied states, followed by an arbitrary
number of unoccupied states, followed by an arbitrary number of occupied states, etc. In the above construction,
the number of occupied levels at the top is np where p is the largest m for which nm 6= 0. The size of the first gap
is p − p′ − 1 where p′ is the next highest value of m for which nm 6= 0. The number of occupied states in the next
group is np], etc.
b) In the bosonic theory, the harmonic oscillator energies are 2πm/L for n ≥ 1. The energy of a state with nm

bosons in the mth level is precisely Eq. (??).

2a) Writing the normalization factor as:

ψL = Ae±i
√

4πφR (2)

we have

ψR(x)ψR(y) = A2ei
√

4πφR(x)ei
√

4πφR(y). (3)

Using the Baker-Haussdorf identity this becomes:

ψR(x)ψR(y) = A2ei
√

4π(φR(x)+φR(y))e−2π[φR(x),φR(y)]

= A2ei
√

4π(φR(x)+φR(y))e(−iπ/2)sgn(x−y) = −i · sgn(x− y)A2ei
√

4π(φR(x)+φR(y)). (4)

(Here I used the fact that sgn (x− y) is an integer.) Multiplying the operators in the opposite order just corresponds
to switching x↔ y, giving

ψR(y)ψR(x) = −i · sgn(y − x)A2ei
√

4π(φR(x)+φR(y)). (5)

We see that indeed:

ψR(y)ψR(x) = −ψR(x)ψR(y). (6)

b) The only reasonable choice is

[φR(x), φL(y)] = c, (7)

for some conveniently chosen constant, c. This is required so that [JR, JL] = 0 and, also [JR, ψL] = 0. Using again
the Baker-Haussdorf identity:

ψR(x)ψL(y) = A2ei
√

4π(φR(x)−φL(y))ei2πc. (8)
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FIG. 1: Example of an excitation in which the fermions in the highest 3 occupied levels are raised 4 steps, corresponding to

n3 = 4.

On the other hand:

ψL(y)ψR(x) = A2ei
√

4π(φR(x)−φL(y))e−i2πc. (9)

Choosing c = 1/4, we have:

e±i2πc = ±i (10)

giving the desired anti-commutation relations.


