Physics 503, Problem Set 4, Due in class on Thursday, March 15

 $\mathbf{2}$

1) In this problem you will repeat the RG calculation for the Kondo model, to second order in the Kondo coupling, at finite temperature. We can follow the same procedure, expanding e^S to second order in the part of the interaction term which mixes > Fourier modes with < Fourier modes. Integrating out the > modes in class we had to evaluate the Grassmann average:

$$\langle \psi(\vec{k},\tau_1)\bar{\psi}(\vec{k},\tau_2)\rangle = \left[\theta(\tau_1-\tau_2)\theta(\epsilon_k) - \theta(\tau_2-\tau_1)\theta(-\epsilon_k)\right]\exp[(\tau_2-\tau_1)\epsilon_k]$$
(1)

a) Show that, at finite temperature, we get a similar expression except that the factors $\theta(\epsilon_k)$ and $\theta(-\epsilon_k)$ get replaced by functions, $g_1(\beta \epsilon_k)$ and $g_2(\beta \epsilon_k)$ respectively, involving the Fermi function $n_F(\beta \epsilon_k)$ which you are to evaluate.

b) In class, I took the τ_1 and τ_2 integrals to run from $-\infty$ to ∞ but now we should let them both run from 0 to β . After ignoring irrelevant operators, effectively replacing the argument of $\psi_{<}(\tau_2)$ by τ_1 , I was left with evaluating an integral over $\tau_2 - \tau_1 \equiv \tau'$:

$$I(\epsilon_k) \equiv \int_{-\infty}^{\infty} d\tau' [\theta(-\tau')\theta(\epsilon_k) - \theta(\tau')\theta(-\epsilon_k)] \operatorname{sgn}(-\tau') \exp(\tau'\epsilon_k).$$
(2)

I showed that this integral gives

$$I(\epsilon_k) = \frac{1}{|\epsilon_k|}.$$
(3)

Show that, at finite T this gets replaced by:

$$I(\beta,\epsilon_k) \equiv g_1(\beta\epsilon_k) \int_{-\tau_1}^0 d\tau' \exp(\tau'\epsilon_k) + g_2(\beta\epsilon_k) \int_0^{\beta-\tau_1} d\tau' \exp(\tau'\epsilon_k).$$
(4)

where g_1 and g_2 are the functions you found in part a). Evaluate the integrals to find the function $I(\beta, \epsilon_k)$ which replaces $1/|\epsilon_k|$. You should find that the sum of integrals in fact doesn't depend on τ_1 . Check that your function reduces to $1/|\epsilon_k|$ as $T \to 0$.

c) The next step followed in class was to integrate over ϵ_{k_2} over the > region, $D' < |\epsilon| < D$. Let's assume that D is small compared to the band width so that the density of states is nearly constant over this energy range. Then the integral evaluated in class was proportional to

$$\int_{D'}^{D} \frac{d\epsilon}{\epsilon} = \ln(D/D').$$
(5)

At finite T this gets replaced by:

$$\int_{D'}^{D} d\epsilon I(\beta, \epsilon) \tag{6}$$

where I is the function found in part b). (In both cases we may restrict the integration to $\epsilon > 0$ by inserting a factor of 2 since the function I is even.) Assume that $D \gg T = 1/\beta$ and consider the behavior of this integral as we lower D' from values $\gg T$ to $\ll T$. Show that, when $D' \gg T$ we obtain approximately the T = 0 result of Eq. (5) and that when $D' \ll T$ we obtain a result which depends only weakly on D'.

d) Using your results from c) argue that the effective coupling, calculated at finite T, when the reduced cut-off is $D \approx T \gg T_K$, is approximately

$$\lambda_{eff}(T) \approx 1/\ln(T/T_K). \tag{7}$$

This was the result I used in class, without justification, to calculate the finite T conductivity.

2) As mentioned in class (without proof) the β -function for the Kondo model, to third order in the dimensionless coupling constant, λ , is:

$$d\lambda/d\ln D = -\lambda^2 + (1/2)\lambda^3.$$
(8)

The bare cut-off, D_0 , is of order E_F . If we keep only the second order term in the β -function, we obtain:

$$T_K \propto E_F e^{-1/\lambda_0} \tag{9}$$

where $\lambda_0 = J\nu$ is the bare Kondo coupling. Eq. (9) is obtained by determining the energy scale at which the effective Kondo coupling is O(1). By integrating Eq. (1), obtain a more accurate estimate of the Kondo temperature of the form:

$$T_K \propto E_F \lambda_0^p e^{-1/\lambda_0} \tag{10}$$

for some exponent p which you are to calculate.