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a) At finite temperature we have

< ψ(k⃗, τ1)ψ̄(k⃗, τ2) > = [θ(τ1 − τ2) < ck⃗(τ1)c
†
k⃗
(τ2) > −θ(τ2 − τ1) < c†

k⃗
(τ2)ck⃗(τ1) >]

= [θ(τ1 − τ2) < ck⃗c
†
k⃗
> −θ(τ2 − τ1) < c†

k⃗
ck⃗ >] exp[(τ2 − τ1)ϵk] (1)

And by using < ck⃗c
†
k⃗
>= 1− nF (βϵk) and < c†

k⃗
ck⃗ >= nF (βϵk) we get

< ψ(k⃗, τ1)ψ̄(k⃗, τ2) > [θ(τ1 − τ2)(1− nF (βϵk))− θ(τ2 − τ1)nF (βϵk)] exp[(τ2 − τ1)ϵk] (2)

b) By using the commutation relations of impurity spin operators we get

I(β, ϵk) =

∫ β

0

dτ2[θ(τ1 − τ2)(1− nF (βϵk))− θ(τ2 − τ1)nF (βϵk)] exp[(τ2 − τ1)ϵk]sgn(τ1 − τ2)

= (1− nF (βϵk))

∫ τ1

0

exp[(τ2 − τ1)ϵk]dτ2 + nF (βϵk)

∫ β

τ1

exp[(τ2 − τ1)ϵk]dτ2

I(β, ϵk) = (1− nF (βϵk))

∫ 0

−τ1

exp[τϵk]dτ + nF (βϵk)

∫ β−τ1

0

exp[τϵk]dτ (3)

By doing the integration we have

I(β, ϵk) =
1− nF (βϵk)

ϵk
(1− e−τ1ϵk) +

nF (βϵk)

ϵk
(e(β−τ1)ϵk − 1)

I(β, ϵk) =
1− 2nF (βϵk)

ϵk
(4)

Where the τ1 dependent terms cancel each other, because 1− nF (βϵk) = nF (βϵk)e
βϵk .

By knowing that at zero temperature we have nF (βϵk) = θ(−ϵk) and using the identity that 1 − 2θ(−ϵk) = sgn(ϵk)
we have

I(β, ϵk) =
1− 2θ(−ϵk)

ϵk
=

sgn(ϵk)

ϵk
=

1

|ϵk|

c) The integral that we needed to evaluate is the following integral

δ =

∫ D

D′

dϵ

ϵ

eβϵ − 1

eβϵ + 1
=∫ βD

βD′

dx

x

ex − 1

ex + 1
(5)

As we know βD ≫ 1, now if βD′ ≫ 1 then in the whole range of integration ex ≫ 1 and we have ex−1
ex+1 ≈ 1 thus we

get

δ ≈
∫ βD

βD′

dx

x
= ln

D

D′ (6)

which is the same result as before.
For the case of βD′ ≪ 1 we have

δ =

∫ βD

βD′

dx

x

ex − 1

ex + 1
=

∫ βD

0

dx

x

ex − 1

ex + 1
−
∫ βD′

0

dx

x

ex − 1

ex + 1
(7)

The dependence on D′ solely comes from the last expression. As we assumed that βD′ ≪ 1, thus we could Taylor
expand the exponetials of the last integral and we get

δ ≈
∫ βD

0

dx

x

ex − 1

ex + 1
−
∫ βD′

0

dx

x

x

2

= −βD
′

2
+

∫ βD

0

dx

x

ex − 1

ex + 1
(8)
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Which we see, weakly depends on D′ and is not diverging in contrast to zero-temperature result.
d) Now suppose that we start the RG from a high-energy cut-off D0 with coupling λ0 and want to find the coupling
at temperature T , by using the result of last part we get

λ(T ) =
λ0

1− λ0 ln
D0

T

(9)

Now let us use this relation for different temperature, let’s say Tk where λ(Tk) ≈ 1 thus we have

λ(Tk) =
λ0

1− λ0 ln
D0

Tk

≈ 1 (10)

By solving the above equation we could find λ0 and we get λ0 ≈ 1/(1 + ln D0

Tk
). By using this relation in Eq. 9 we

have

λ(T ) ≈ 1

1 + ln D0

Tk
− ln D0

T

=
1

1 + ln T
Tk

≈
(
ln
T

Tk

)−1

(11)

2) We have

dλ

−λ2 + λ3/2
= d lnD (12)

By integrating above equation we get [
1

λ
+

1

2
ln

2− λ

λ

]λK

λ0

= ln
Tk
EF

(13)

where λ0 is the coupling at energy Ek. By using the fact that the Kondo coupling is approximately 1, λK ≈ 1 and
for λ0 ≪ 1 we get[

1

λ
+

1

2
ln

2− λ

λ

]λK

λ0

= − 1

λ0
− 1

2
ln

2− λ0
λ0

+ 1 ≈ − 1

λ0
− 1

2
ln

2

λ0
+ 1 = ln

(
e

√
λ0
2
e−1/λ0

)
(14)

By using above equations we get

Tk ≈ c ∗ EF

√
λ0e

−1/λ0 (15)

where c is a constant of order 1 not determined accurately by this procedure. Thus we get p = 1
2 . This leads to a

slight reduction of TK but it is relatively unimportant compared to the exponential factor. So, we see that we get a
quite accurate result from knowing only the quadratic term in the β-function.


