Physics 503, Problem Set 4 Solutions



a) At finite temperature we have

<Yk, Tk, ) > = [0(11 = 72) < cp(m1)ck(m2) > =0(r2 = 71) < cl(m)cp(mr) >]

=[0(r — 1) < c,;c% >—0(rn—7)< C%C;z > exp[(m2 — 1 )e€k] (1)
And by using < CECT;Q >=1—npr(fe;) and < CTECE >=np(Be) we get

< p(k, )Pk, m2) > [0(r1 — 72)(1 — np(Ber)) — O(r2 — 71)np(Ber)] expl(2 — 71)ek] (2)

b) By using the commutation relations of impurity spin operators we get
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I1(B,ex) = /0 dra[0(m1 — 12)(1 — np(Ber)) — 0(m2 — T1)np(Ber)] expl(T2 — T1)ek]sgn(m — 72)
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B—T1
I1(B,er) = (1 — np(ﬂek))/ explreg|dr + nF(ﬂek)/O exp[reg|dr (3)
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By doing the integration we have
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Where the 7; dependent terms cancel each other, because 1 — np(Bex) = np(Bex)e’cx.
By knowing that at zero temperature we have np(Bei) = 0(—e¢i) and using the identity that 1 — 20(—ex) = sgn(ex)
we have
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¢) The integral that we needed to evaluate is the following integral
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As we know D > 1, now if D’ > 1 then in the whole range of integration e* > 1 and we have iz—;} ~ 1 thus we
get
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which is the same result as before.
For the case of 3D’ < 1 we have
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The dependence on D’ solely comes from the last expression. As we assumed that 8D’ < 1, thus we could Taylor
expand the exponetials of the last integral and we get
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Which we see, weakly depends on D’ and is not diverging in contrast to zero-temperature result.
d) Now suppose that we start the RG from a high-energy cut-off Dy with coupling Ay and want to find the coupling
at temperature 7', by using the result of last part we get
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Now let us use this relation for different temperature, let’s say Tj where A(T) = 1 thus we have

A
MTy) = o Aooln& ~1 (10)
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By solving the above equation we could find Ay and we get A\g ~ 1/(1 4 In %’) By using this relation in Eq. 9 we
have
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By integrating above equation we get
=1In— (13)

where )¢ is the coupling at energy FEj. By using the fact that the Kondo coupling is approximately 1, Ax =~ 1 and
for A\p < 1 we get
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By using above equations we get

Ty & ¢ x Epr/Age /20 (15)

where ¢ is a constant of order 1 not determined accurately by this procedure. Thus we get p = % This leads to a
slight reduction of Tk but it is relatively unimportant compared to the exponential factor. So, we see that we get a
quite accurate result from knowing only the quadratic term in the S-function.



