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Physics 503, Problem Set 3, Due by Thursday, Feb. 23
(This Problem Set is due during the midterm break, a week after the midterm exam. Please bring

it to my office then, or send a scan by email. I recommend at least trying all problems before the
exam for practice.)

1) The Pfaffian of an anti-symmetric 2n× 2n dimensional matrix, M is defined as:

Pf(M) ≡ 1

2nn!

∑
{i1,i2,...in}

ϵi1i2i3...i2nMi1i2Mi3i4Mi5i6 . . .Mi2n−1i2n (1)

where ϵi1i2i3...i2n is the anti-symmetric 2nth-rank unit tensor and the sum is over all permutations of the indices. The

Pfaffian can be proven to obey the Pfaffian identity [Pf(M)]
2
=Det (M); its square is the determinant. A short, elegant

proof of this Pfaffian identity can be constructed using the Grassmann integral. Construct this proof as follows.
a) Consider the Grassmann integral:

I(M) ≡

[
2n∏
i=1

dχi

]
exp

−∑
i,j

χiMijχj

 (2)

Note we have 2n χj variables but no χ̄j variables. Show that I(M) ∝ Pf(M) and find the constant of proportionality.
b) Now consider I(M)2. This can be written as a product of Grassmann integrals over 2 sets of Grassmann variables
χj and ηj . Change Grassmann integration variables to:

ψj ≡ χj + iηj

ψ̄j ≡ χj − iηj (3)

being careful to calculate the Jacobean for the change of variables. Show that the resulting Grassmann integral is
proportional to ∏

j

dψ̄jdψj

 exp

−∑
i,j

ψ̄iMijψj

 = Det(M) (4)

and thus complete the proof. [You may use Eq. (4) which was essentially proven in class.]
Grassmann integrals of the form of Eq. (2) occur for Majorana fermions which are used to describe certain quantum

Hall states and other phenomena in condensed matter physics. Indeed a class of trial wave-functions for the fractional
hall effect are referred to as Pfaffian states.
2) Consider again the simple 2-site tight-binding model for spinless electrons, that we studied in PS1 problem 1a)
with:

Ĥ − µN̂ = −t(ψ̂†
1ψ̂2 + h.c.) + V ψ̂†

2ψ̂
†
1ψ̂1ψ̂2 − µ(ψ̂†

1ψ̂1 + ψ̂†
2ψ̂2) (5)

Here I have written the Hamiltonian in Shankar notation and I have included the chemical potential term.
a) Using our results from PS1, write the exact partition function for this model. Expand it to first order in V .
b) Rewrite the Hamiltonian of Eq. (5) in terms of the operators which diagonalize the hopping term:

ψ̂± ≡ (ψ̂1 ± ψ̂2)/
√
2. (6)

Write the Feynman path integral for the partition function of this model, introducing Grassmann variables ψ+, ψ−,
ψ̄+ and ψ̄−. Expand the path integral to first order in V :

Z = Z0 + V Z1 +O(V 2). (7)

Explicitly evaluate this expression. (Don’t worry about the value of Z0 itself, which may not be given correctly by
the path integral; just focus on this ratio.)
You will find that you need to evaluate an ambiguous quantity, < ψ̄(τ)ψ(τ) > in the path integral. Since we

concluded that < ψ̄(τ)ψ(τ ′) > equals the corresponding time-ordered Green’s function in the operator formalism, it
is unclear what value it has for equal times. Actually, a careful look at the derivation of the path integral resolves
this ambiguity. In that derivation, we see that ψ̄ occurs in the action at a time later by β/N than ψ where N is
the number of time steps in the discretization of the path integral, assuming the Hamiltonian is written in normal
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ordered form as in Eq. (5). Therefore, we should interpret < ψ̄(τ)ψ(τ) > as < ψ̄(τ+0+)ψ(τ) > where 0+ is a positive
infinitesimal quantity. Thus we obtain:

< ψ̄(τ + 0+)ψ(τ) >= nF (ϵ) (8)

where ϵ is the energy of the corresponding state.
Compare to the Taylor expansion of the exact answer, from part a).

3) Consider the quantum S=1/2 Heisenberg antiferromagnetic chain with non-uniform Hamiltonian:

H =
∑
i

JiS⃗i · S⃗i+1 (9)

with S⃗i spin-1/2 operators, S⃗i = (1/2)σ⃗i. Assume that the (posative) exchange couplings vary with period 3, with
J3i+1 ≡ J , J3i−1 = J3i ≡ J ′ and 0 < J ′ ≪ J . We may derive a low energy Hamiltonian (for energies ≪ J) by

integrating out the strongly coupled spins S⃗3i±1 to obtain the effective Hamiltonian for the weakly coupled spins S⃗3i.
Find this low energy Hamiltonian to order J ′2/J .
HINT: It is not necessary or advisable to use any fancy path integral methods here. Just use a projection technique
based on degenerate perturbation theory.


