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la) By Taylor expanding the exponent to second order and using:

/d¢1d¢2d¢3d¢4¢4¢3¢2¢1 =1 (1)
and the anti-commutation property of Grassmann variables we see that:
1 &
P(M) = /d1/)1d1/12d1/13d1/)41/14 exp |5 Z ViMijp; | = MiaM3zq + MiaMoag — Mz Moy (2)
ij=1

The plus or minus sign in each term is determined by the parity of permutation of the indices, i.e. by whether an
even or odd number of permutations is needed to get them in the order 1234 which is equivalent to 4321.
b) The full matrix M can be written:

0 Mys Mz My

7M12 0 M23 M24
M = . 3
—Myzs —Mas 0 May (3)

—Myy —Moy —Msy 0

The determinant can be written:

—Mio Moz Moy —Mis 0 Moy —Mis 0 Mos
DetM = —M12 - Det *Mlg 0 M34 + M13 - Det 7M13 7M23 M34 — M14 - Det, 7M13 7M23 0
—Myy —M3zq 0O —Miy —Msy O —Myy —Moy —Msy

= Myo(Mio M3, + MogMsgMyy — MogMi3Msy) 4+ Myz(—MyaMszg Moy + M3, Mz — Moy Moz My y)

+ My (Mo MagMsay — Moz My3 Moy + Mas M)
= (M12M34)* + (M13Ma4)? + (M14Mas)? + 2(MioMsa)(Maz Miy) — 2(Mi2Msa) (M3 Mas) — 2(MogMya) (M3 May)
= (My2Msy + My4Mas — MyzMoy)?. (4)

In the case of an integral over 2n Grassmann variables with a general 2n x 2n anti-symmetric matrix M, it can be
seen that:

2n 2n
1 . .
/Hd%eXp §Z¢iMij¢j = > sen({inin, - don})(Miys, Mg, - My, i, (5)
i=1

i,j=1 {i1,i2,...52n }

where {i1,142,...12,} denotes an arbitrary permutation of the indices 1,2, 3, ...2n and sgn({41, 42, ... 42, }) denotes the
sign of the permutation. A sum over all permutations is taken. The function of M on the right hand side of Eq. (5)
is known as the Pfaffian of the matrix M, Pf (M). It can be proven in general that:

(Pf M)? = Det M. (6)

2a) First Method: The imaginary part of the green function is

ImG?,,(w,q) = —e’7 Z(l + eP)e PEm| < n|Sgm > |2 (7)
Thus we have
dw “ eBQ —BE —ﬂE a a
%wImGret(w, q) = 5 (e77Fm +e 75 ) (B — En) < n|Sgm ><m|S%gn > (8)
By using the identity
a a _ a a q a
(Em — En) <n|Sgm ><m|S%gn >=<n|SgH|m ><m|S%n > — < n|HSZm ><m|S%4n > 9)

We have

dw a 1 a a a a a Qa a a
/%WImGTet(w,(j) = 75 [(< SEHS_‘T> + < S_q’Sq’H >) — (< HS(TS—@ > + < S—tiHSlj >)]

—_

= 5<[[H, S41,8%4]) (10)



Thus ¢ = 1/2.

Second Method:

/O; Z—:wGﬁet(w,(j) = Z/O; g—:w/ooo dte™" ([Sg(t) /OO d‘”/ dt (jt )<[S§(t) S D

Now we integrate by parts inside the t-integral:

[ Py T

Using S2(t) = e'*Sge™"M", we can write:
d a : iHt al,—tHt
dtSq (t) = ie""'[H, Sgle . (13)
We also change the order of the w and ¢ integral to write:
> d_ G ( —-) s OOdt [ th[H Sa] —iHt ga }) 00 d_w iwt (14)
7002wmt ,q—zo (le ,Sgle 8% 70027re

The w integral gives a Dirac d-function, 0(t). Assuming that:

[ aswso - a0 (15)
we obtain:
| et = (21531 54) o

the desired result with ¢ = 1/2 since Eq. 5 of PS2 is the sum rule for ImG. Note that we have also obtained a sum
rule for the real part.
b)

[H, 5% 72JZ 1S5 Sa.s SE- (17)

Here we have used the fact that the only terms in H which don’t commute with S % are the ones on nearest neighbour

links with one end at K. The way we have written the Hamiltonian, each link appears twice, giving the factor of 2.
Considering separately the two terms S%S%+g and S%S%Jrj in Eq. (17) we find:

[H,5%) = —2Ji) (5%SY% % 5= SLSE ) (18)
5

Now consider the double commutator [[H , S%], Sg}. From Eq. (18), we see that this vanishes unless either R = 0 or
R+ §&=0. Thus we may write:

[[H, Sz, sg} = b 2] Y [STSY — SUST, S|+ 2iJ Y 0,557 55U — SV 5%, 57] (19)
§ §
Calculating the commutators gives:
(117, 53], 55] = 26 37 3_(535% + 545%) 2JZ O7iv55(SEST S+ SUSY ) (20)

B

We may invert the dummy summation vector § — —6 in the second term to write more compactly:

[[H, Sz, sg} =273 (055 055)(SES% + SSY). (21)
5



c) First, let us prove that [ wReG%,(w,q)dw = 0. We have

ret

w dw
—Re—M———
21 w4+ AE,, +in

“ B _ w w+AE,m
= P27 | < n|Sglm > [2(e=PPr —e ﬂEm)/%(wAE e
w w—AE,m
— " dw
2 w?+n?

ret

w a _ B9 a 2(,~BEn _ ,~BEm
/%ReG (w,q)dw =e Z| < n|Sglm > [*(e —e )

=P | < n[S4m > [*(e P — e PEm)

In going from the second line to third line we use the change of variables in integral w — w — AE,,,,. From above
equation we have

8O
/%ReGget(waq)dw = 62—7r Z| < n|Sgm > |>(e=PEn — e_BEm)/

- dw  (22)

oo v JAN D n?
oo w2 + 772 w? + 772

In this equation, the second term is zero because its an integration of odd function. The third term is zero in the
limit of n — 0, because it is equal to n 7. Finally it remains to prove that the first term is zero too, this is not the
consequence of the integration but is the result of summation over m,n, it is easy to see that

Y| < nlSgim > (eI - e ) = ([57.52,]) = 0

To proceed with proving the sum rule it is convenient to undo the Fourier transform and rewrite the result in part a)
as:

| Gt = /255,55, (23)

oo 2T

We now Fourier transform back and use the result of part b) to write:

% dw a (= iq-R > dw a (D
/ %WGret(q’w) = JZ e* / ngret(R’w)

—oo = —o0
R

i3 [1— ] (SE8% + 5USY). (24)
7

(Here the Kroenecker 6-functions in Eq. (21) were used to do the sum over R, leaving only the sum over 4.) Now
let’s compare J(S5 S5 + SgSg> to (H). Due to the various symmetries of the equilibrium state, (H) actually consists
gf 3-4- N equal terms, taking into a(icount the 3 terms in the scalar product Sj - Sﬁ+g,
9 and the N terms in the sum over R. On the other hand, only 2 of these equal terms occur in Eq. (24). Thus we
may write:

the 4 terms in the sum over

J(SESE + SUSY) = (H)/(6N). (25)

Thus:

| Eatta@e) =i Y [1- e () 6m) (26)

oo =
The sum over § is now straightforward and gives, for a square lattice of spacing a:

| @) = if2 - coslaza) — coslay( ) /(3. 27)

Thus the function f(q) is:
f(@) = [2 — cos(gza) — cos(gya)]/(3N). (28)

(The sum rule for the real part vanishes.) Also note that (H) < 0 for the Heisenberg model so this integral
is generally < 0, as expected. This sum rule provides a very useful check on approximate numerical calculations
of the spectral function and also on neutron scattering measurements which will not cover the full range of frequencies.



3a) For S[0. + 04.] we have

df.; dbge,
dr dr

B
Sl[ecl + equ] = SI [Gcl] + SI [un] - I/ dr
0
We only need to show that the last term is zero, by using integration by parts we have
7 df. de df P e
/ dr=Zae 1 g |~ / dr—=6,,
0 dr dr dr o 0 dr?

In above equation, the first term is zero because of boundary conditions on quantum fluctuation 64,. The second
term is zero, because 0. by definition satisfies classical equation of motion.

3b) By using boundary conditions Eq. (12), we see that for any integer n we have a classical solution Hg), which
satisfies the boundary conditions 92”(0) = 0; and 92?) (B) = 05 + 2mn thus we have

/d[g]eSI[G] = Z/d[gqu]esf[9§7>+0qu] - Z/d[é’qu]es’[eg)]*&[equ]
= 3 ese] / A0S0 = 03 S (29)

Where C = [ d[f4,]e% %], and it is independent of 6; ;.
3c) By using classical equation of motion we have d?6.;/dr? = 0, by solving this equation we get

05 (r) = Aur + B, (30)
And by imposing the boundary conditions we get B, =6, , A, = (2mn+6; —6;)/5. Thus for classical action we have
(n) —I (7 2 1 2
Srlé,,’] = —/ dr(An)* = —2mn+ 60y —6;) (31)
2 Jo 23
And for the correlation we have

< Ople P H19; >= 0 e7 Grntos—0° (32)

By using Poisson sum formula we have
Z SE(2rn+05—6,)2 Z > Eenat0;—0:)%  —2i
25 (2mnt0r—0i)" _ 25 (2me+05—0i)" j—2imma g, (33)
n m YT

The integral is a straightforward integration and we have

o0
/ e;_ﬂj(Qﬂi-i-@f—Hi)Zememzdx —_ . 47rﬂefg7;_f +im(0;—0;)
I
— 00

For the correlation we get

- 2 4 m2 |
<Ol M9 >= 0 e Crntos 00" — ,/%ﬁcz e~ BB +im(8;=02) (34)

the last term is exactly > % (01)1m (0;)ePEm.

4a) Consider the sum over So;;1 for some arbitrary site in the chain (not at the edge). This gives:

Z eXp[(2J/T)SQi+1(SQi + SQH_Q)] = 2COSh[(2J/T)(SQi + SQH_Q)]. (35)
Sait1==%1



We would like to write this in the form:
2 COSh[(QJ/T)(SQz + S2i+2)] = CeXp[(2Jeff/T)SQiS2i+2] (36)

for some effective coupling J.r¢. Noting that the left hand side equals 2 when S»; and Sg; 42 are anti-parallel and
2 cosh(4J/T) when they are parallel, we see that:

Jepr = (T'/4) In[cosh(4J/T)]. (37)
b) For the square lattice case, summing over the spin at site 0 gives
2 cosh[(2J/T)(S1 + S2 + S5 + S4)] (38)

where the S; are the 4 nearest neighbour spins at . (The factor of 2 occurs here because each link appears twice in
the sum defining the Hamiltonian.) Noting that this as the values 2 when 2 spins are up and 2 are down, 2 cosh(4.J/T)
when one points oppositely to the other 3 and 2 cosh(8.J/T") when they all point the same direction we can write the
effective Hamiltonian in the desired form. Noting that this function is completely symmetric under interchanging the
4 spins we should be able to write:

2 cosh[(2J/T)(S1 + Sz + S3 + S4)] = Cexpla(Sy + So + S3 + S4)% + 65152535, (39)

for 3 constants, C, o and §. The 3 cases give the 3 equations in 3 unknowns:

2 =ce? (40)
2cosh(4J/T) = cet*=° (41)
2 cosh(8J/T) = ce'5T9, (42)
These give:
1
a=1e Infcosh(8.J/T)] (43)
5= éln[cosh(&]/T) / cosh*(4.J/T)). (44)

Thus from summing over the spin at 0 we generate first neighbour and second neighbour couplings:
J )T =Jo)T =2a 77 (45)
and a plaquette coupling:
Jp/T = 6. (46)

However, we must take into account that each first neighbour coupling gets an equal contribution from summing over
the spins at 2 different sites. For instance, we develop a coupling S,2Sqg from summing over S5 and also Saz4ag. On
the other hand, the second neighbour and plaquette couplings arise from summing over the spin on a unique site. We
must also take into account that, the way the Hamiltonian was written in the statement of the problem, each first
and second neighbour link occurs twice while each plaquette occurs only once. Thus, the final answers are:

J1 = gln[cosh(&]/T)] (47)
T
Jy = T In[cosh(8.J/T)] (48)

Jp = gln[cosh(&]/T) / cosh® (4.J/T)). (49)



