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1a) By Taylor expanding the exponent to second order and using:
∫

dψ1dψ2dψ3dψ4ψ4ψ3ψ2ψ1 = 1 (1)

and the anti-commutation property of Grassmann variables we see that:

P (M) ≡

∫

dψ1dψ2dψ3dψ4ψ4 exp





1

2

4
∑

i,j=1

ψiMijψj



 =M12M34 +M14M23 −M13M24 (2)

The plus or minus sign in each term is determined by the parity of permutation of the indices, i.e. by whether an
even or odd number of permutations is needed to get them in the order 1234 which is equivalent to 4321.
b) The full matrix M can be written:

M =







0 M12 M13 M14

−M12 0 M23 M24

−M13 −M23 0 M34

−M14 −M24 −M34 0






. (3)

The determinant can be written:

DetM = −M12 ·Det





−M12 M23 M24

−M13 0 M34

−M14 −M34 0



+M13 ·Det





−M12 0 M24

−M13 −M23 M34

−M14 −M24 0



−M14 ·Det





−M12 0 M23

−M13 −M23 0
−M14 −M24 −M34





=M12(M12M
2
34 +M23M34M14 −M24M13M34) +M13(−M12M34M24 +M2

24M13 −M24M23M14)

+M14(M12M23M34 −M23M13M24 +M2
23M14)

= (M12M34)
2 + (M13M24)

2 + (M14M23)
2 + 2(M12M34)(M23M14)− 2(M12M34)(M13M24)− 2(M23M14)(M13M24)

= (M12M34 +M14M23 −M13M24)
2. (4)

In the case of an integral over 2n Grassmann variables with a general 2n × 2n anti-symmetric matrix M , it can be
seen that:

∫ 2n
∏

i=1

dψi exp





1

2

2n
∑

i,j=1

ψiMijψj



 =
∑

{i1,i2,...i2n}

sgn({i1, i2, . . . i2n})(Mi1i2Mi3i4 . . .M12n−1i2n (5)

where {i1, i2, . . . i2n} denotes an arbitrary permutation of the indices 1, 2, 3, . . .2n and sgn({i1, i2, . . . i2n}) denotes the
sign of the permutation. A sum over all permutations is taken. The function of M on the right hand side of Eq. (5)
is known as the Pfaffian of the matrix M , Pf (M). It can be proven in general that:

(Pf M)2 = Det M. (6)

2a) First Method: The imaginary part of the green function is

ImGa
ret(ω, ~q) = −eβΩπ

∑

n,m

(1 + eβω)e−βEm | < n|Sa
~q |m > |2 (7)

Thus we have
∫

dω

2π
ωImGa

ret(ω, ~q) = −
eβΩ

2

∑

m,n

(e−βEm + e−βEn)(Em − En) < n|Sa
~q |m >< m|Sa

−~q|n > (8)

By using the identity

(Em − En) < n|Sa
~q |m >< m|Sa

−~q|n >=< n|Sa
~qH |m >< m|Sa

−~q|n > − < n|HSq
~q
|m >< m|Sa

−~q|n > (9)

We have
∫

dω

2π
ωImGa

ret(ω, ~q) = −
1

2

[

(< Sa
~qHS

a
−~q > + < Sa

−~qS
a
~qH >)− (< HSa

~qS
a
−~q > + < Sa

−~qHS
a
~q >)

]

=
1

2
〈
[

[H,Sa
~q ], S

a
−~q

]

〉 (10)
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Thus c = 1/2.

Second Method:
∫ ∞

−∞

dω

2π
ωGa

ret(ω, ~q) = −i

∫ ∞

−∞

dω

2π
ω

∫ ∞

0

dteiωt〈[Sa
~q (t), S

a
−~q]〉 = −

∫ ∞

−∞

dω

2π

∫ ∞

0

dt

(

d

dt
eiωt

)

〈[Sa
~q (t), S

a
−~q]〉. (11)

Now we integrate by parts inside the t-integral:
∫ ∞

−∞

dω

2π
ωGa

ret(ω, ~q) =

∫ ∞

−∞

dω

2π

∫ ∞

0

dteiωt〈

[

d

dt
Sa
~q (t), S

a
−~q

]

〉. (12)

Using Sa
~q (t) = eiHtSa

~q e
−iHt, we can write:

d

dt
Sa
~q (t) = ieiHt[H,Sa

~q ]e
−iHt. (13)

We also change the order of the ω and t integral to write:
∫ ∞

−∞

dω

2π
ωGa

ret(ω, ~q) = i

∫ ∞

0

dt〈
[

eiHt[H,Sa
~q ]e

−iHt, Sa
−~q

]

〉

∫ ∞

−∞

dω

2π
eiωt (14)

The ω integral gives a Dirac δ-function, δ(t). Assuming that:

∫ ∞

0

dtf(t)δ(t) = (1/2)f(0) (15)

we obtain:
∫ ∞

−∞

dω

2π
ωGa

ret(ω, ~q) = (i/2)〈
[

[H,Sa
~q ], S

a
−~q

]

〉 (16)

the desired result with c = 1/2 since Eq. 5 of PS2 is the sum rule for ImG. Note that we have also obtained a sum
rule for the real part.
b)

[H,Sz
~R
] = 2J

∑

~δ

[~S~R
· ~S~R+~δ

, Sz
~R
]. (17)

Here we have used the fact that the only terms in H which don’t commute with Sz
~R
are the ones on nearest neighbour

links with one end at ~R. The way we have written the Hamiltonian, each link appears twice, giving the factor of 2.
Considering separately the two terms Sx

~R
Sx

~R+~δ
and Sy

~R
Sy

~R+~δ
in Eq. (17) we find:

[H,Sz
~R
] = −2Ji

∑

~δ

(Sx
~R
Sy

~R+~δ
− Sy

~R
Sx

~R+~δ
) (18)

Now consider the double commutator
[

[H,Sz
~R
], Sz

~0

]

. From Eq. (18), we see that this vanishes unless either ~R = ~0 or

~R+ ~δ = ~0. Thus we may write:
[

[H,Sz
~R
], Sz

~0

]

= δ~R,~0 · 2iJ
∑

~δ

[Sx
~0
Sy
~δ
− Sy

~0
Sx
~δ
, Sz

~0
] + 2iJ

∑

~δ

δ~R+~δ,~0[S
x

−~δ
Sy
~0
− Sy

−~δ
Sx
~0
, Sz

~0
] (19)

Calculating the commutators gives:
[

[H,Sz
~R
], Sz

~0

]

= 2δ~R,~0J
∑

~δ

(Sx
~0
Sx
~δ
+ Sy

~0
Sy
~δ
)− 2J

∑

~δ

δ~R+~δ,~0(S
x
~0
Sx

−~δ
+ Sy

~0
Sy

−~δ
) (20)

We may invert the dummy summation vector ~δ → −~δ in the second term to write more compactly:
[

[H,Sz
~R
], Sz

~0

]

= 2J
∑

~δ

(δ~R,~0 − δ~R,~δ
)(Sx

~0
Sx
~δ
+ Sy

~0
Sy
~δ
). (21)
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c) First, let us prove that
∫

ωReGa
ret(ω, q)dω = 0. We have

∫

ω

2π
ReGa

ret(ω, q)dω = eβΩ
∑

| < n|Sa
~q |m > |2(e−βEn − e−βEm)

∫

ω

2π
Re

dω

ω +∆Enm + iη

= eβΩ
∑

| < n|Sa
~q |m > |2(e−βEn − e−βEm)

∫

ω

2π

ω +∆Enm

(ω +∆Enm)2 + η2
dω

= eβΩ
∑

| < n|Sa
~q |m > |2(e−βEn − e−βEm)

∫

ω

2π

ω −∆Enm

ω2 + η2
dω

In going from the second line to third line we use the change of variables in integral ω → ω − ∆Enm. From above
equation we have

∫

ω

2π
ReGa

ret(ω, q)dω =
eβΩ

2π

∑

| < n|Sa
~q |m > |2(e−βEn − e−βEm)

∫ ∞

−∞

[

1−
ω ∆En,m

ω2 + η2
−

η2

ω2 + η2

]

dω (22)

In this equation, the second term is zero because its an integration of odd function. The third term is zero in the
limit of η → 0, because it is equal to η π. Finally it remains to prove that the first term is zero too, this is not the
consequence of the integration but is the result of summation over m,n, it is easy to see that

eβΩ
∑

| < n|Sa
~q |m > |2(e−βEn − e−βEm) = 〈[Sa

~q , S
a
~−q

]〉 = 0

To proceed with proving the sum rule it is convenient to undo the Fourier transform and rewrite the result in part a)
as:

∫ ∞

−∞

dω

2π
ωGa

ret(~R, ω) = (i/2)〈
[

[H,Sa
~R
], Sa

~0

]

〉. (23)

We now Fourier transform back and use the result of part b) to write:

∫ ∞

−∞

dω

2π
ωGa

ret(~q, ω) = J
∑

~R

ei~q·
~R

∫ ∞

−∞

dω

2π
ωGa

ret(~R, ω) = iJ
∑

~δ

[

1− ei~q·
~δ
]

〈Sx
~0
Sx
~δ
+ Sy

~0
Sy
~δ
〉. (24)

(Here the Kroenecker δ-functions in Eq. (21) were used to do the sum over ~R, leaving only the sum over ~δ.) Now
let’s compare J〈Sx

~0
Sx
~δ
+ Sy

~0
Sy
~δ
〉 to 〈H〉. Due to the various symmetries of the equilibrium state, 〈H〉 actually consists

of 3 · 4 ·N equal terms, taking into account the 3 terms in the scalar product ~S~R
· ~S~R+~δ

, the 4 terms in the sum over
~δ and the N terms in the sum over ~R. On the other hand, only 2 of these equal terms occur in Eq. (24). Thus we
may write:

J〈Sx
~0
Sx
~δ
+ Sy

~0
Sy
~δ
〉 = 〈H〉/(6N). (25)

Thus:
∫ ∞

−∞

dω

2π
ωGa

ret(~q, ω) = i
∑

~δ

[

1− ei~q·
~δ
]

〈H〉/(6N). (26)

The sum over ~δ is now straightforward and gives, for a square lattice of spacing a:

∫ ∞

−∞

dω

2π
ωGa

ret(~q, ω) = i[2− cos(qxa)− cos(qya)]〈H〉/(3N). (27)

Thus the function f(~q) is:

f(~q) = [2 − cos(qxa)− cos(qya)]/(3N). (28)

(The sum rule for the real part vanishes.) Also note that 〈H〉 < 0 for the Heisenberg model so this integral
is generally < 0, as expected. This sum rule provides a very useful check on approximate numerical calculations
of the spectral function and also on neutron scattering measurements which will not cover the full range of frequencies.
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3a) For SI [θcl + θqu] we have

SI [θcl + θqu] = SI [θcl] + SI [θqu]− I

∫ β

0

dτ
dθcl
dτ

dθqu
dτ

We only need to show that the last term is zero, by using integration by parts we have

∫ β

0

dτ
dθcl
dτ

dθqu
dτ

=

[

dθcl
dτ

θqu

]β

0

−

∫ β

0

dτ
d2θcl
dτ2

θqu

In above equation, the first term is zero because of boundary conditions on quantum fluctuation θqu. The second
term is zero, because θcl by definition satisfies classical equation of motion.

3b) By using boundary conditions Eq. (12), we see that for any integer n we have a classical solution θ
(n)
cl , which

satisfies the boundary conditions θ
(n)
cl (0) = θi and θ

(n)
cl (β) = θf + 2πn thus we have

∫

d[θ]eSI [θ] =
∑

n

∫

d[θqu]e
SI [θ

(n)

cl
+θqu] =

∑

n

∫

d[θqu]e
SI [θ

(n)

cl
]+SI [θqu]

=
∑

n

eSI [θ
(n)

cl
]

∫

d[θqu]e
SI [θqu] = C

∑

n

eSI [θ
(n)

cl
] (29)

Where C =
∫

d[θqu]e
SI [θqu], and it is independent of θi,f .

3c) By using classical equation of motion we have d2θcl/dτ
2 = 0, by solving this equation we get

θ
(n)
cl (τ) = Anτ +Bn (30)

And by imposing the boundary conditions we get Bn = θi , An = (2πn+ θf − θi)/β. Thus for classical action we have

SI [θ
(n)
cl ] =

−I

2

∫ β

0

dτ(An)
2 =

−I

2β
(2πn+ θf − θi)

2 (31)

And for the correlation we have

< θf |e
−βH |θi >= C

∑

n

e
−I
2β (2πn+θf−θi)

2

(32)

By using Poisson sum formula we have

∑

n

e
−I
2β (2πn+θf−θi)

2

=
∑

m

∫ ∞

−∞

e
−I
2β (2πx+θf−θi)

2

e−2iπmxdx (33)

The integral is a straightforward integration and we have

∫ ∞

−∞

e
−I
2β (2πx+θf−θi)

2

e−2iπmxdx =

√

4πβ

I
e−βm2

2I +im(θf−θi)

For the correlation we get

< θf |e
−βH |θi >= C

∑

n

e
−I
2β (2πn+θf−θi)

2

=

√

4πβ

I
C
∑

m

e−βm2

2I +im(θf−θi) (34)

the last term is exactly
∑

m ψ∗
m(θf )ψm(θi)e

−βEm .

4a) Consider the sum over S2i+1 for some arbitrary site in the chain (not at the edge). This gives:

∑

S2i+1=±1

exp[(2J/T )S2i+1(S2i + S2i+2)] = 2 cosh[(2J/T )(S2i + S2i+2)]. (35)
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We would like to write this in the form:

2 cosh[(2J/T )(S2i + S2i+2)] = c exp[(2Jeff/T )S2iS2i+2] (36)

for some effective coupling Jeff . Noting that the left hand side equals 2 when S2i and S2i+2 are anti-parallel and
2 cosh(4J/T ) when they are parallel, we see that:

Jeff = (T/4) ln[cosh(4J/T )]. (37)

b) For the square lattice case, summing over the spin at site ~0 gives

2 cosh[(2J/T )(S1 + S2 + S3 + S4)] (38)

where the Si are the 4 nearest neighbour spins at δ. (The factor of 2 occurs here because each link appears twice in
the sum defining the Hamiltonian.) Noting that this as the values 2 when 2 spins are up and 2 are down, 2 cosh(4J/T )
when one points oppositely to the other 3 and 2 cosh(8J/T ) when they all point the same direction we can write the
effective Hamiltonian in the desired form. Noting that this function is completely symmetric under interchanging the
4 spins we should be able to write:

2 cosh[(2J/T )(S1 + S2 + S3 + S4)] = C exp[α(S1 + S2 + S3 + S4)
2 + δS1S2S3S4] (39)

for 3 constants, C, α and δ. The 3 cases give the 3 equations in 3 unknowns:

2 = ceδ (40)

2 cosh(4J/T ) = ce4α−δ (41)

2 cosh(8J/T ) = ce16α+δ. (42)

These give:

α =
1

16
ln[cosh(8J/T )] (43)

δ =
1

8
ln[cosh(8J/T )/ cosh4(4J/T )]. (44)

Thus from summing over the spin at ~0 we generate first neighbour and second neighbour couplings:

J1/T = J2/T = 2α ?? (45)

and a plaquette coupling:

JP /T = δ. (46)

However, we must take into account that each first neighbour coupling gets an equal contribution from summing over
the spins at 2 different sites. For instance, we develop a coupling Sax̂Saŷ from summing over S~0 and also Sax̂+aŷ. On
the other hand, the second neighbour and plaquette couplings arise from summing over the spin on a unique site. We
must also take into account that, the way the Hamiltonian was written in the statement of the problem, each first
and second neighbour link occurs twice while each plaquette occurs only once. Thus, the final answers are:

J1 =
T

8
ln[cosh(8J/T )] (47)

J2 =
T

16
ln[cosh(8J/T )] (48)

JP =
T

8
ln[cosh(8J/T )/ cosh4(4J/T )]. (49)


