Physics 503 Problem Set 1 Solutions

The Hamiltonian could be written in the following form

i= 3l (%) (2) 0

We could simply diagonalized this Hamiltonian. In terms of transformed operators the Hamiltonian will be

H= Z E+elge+g +E_e e, (2)
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Where, by assuming that ¢; = € — A and €2 = ¢ + A we have

Eizei\/A2+t2 (3)

and ey , = afci, + af ca, with aiF is given by

A2 +t2 A2 +t2
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In terms of the transformed operators the two—particle eigenstates are given by

el ylo> Eg=2E_ =2(c— VA 1 £2)

10 > E_,=E_ +E, =2

|—,—,T,4> = |Ground >= el

|-, +,0,0" > = eT_U €l o
[+, 4+, T, 4> = 6_7T€_7¢|0 > Eiy =2FE_ =2(e+ VA2 +1?)
()
these are all the six eigenstates and eigenvalues of the Hamiltonian, for two electron system. The ground state is
given by |Ground > and its energy is Fg = 2(e — /A2 4 ¢2).

la) For A = 0 we have Eg = 2(e — t), and the eigenstate is given by |G >= 1(c1+ + ca,1)T(c1,, + €2,)7|0 >.
1b) The Hamiltonian is symmetric under parity. Thus H — H as if ¢; +— cq, thus it means for any eigenstate of the
Hamiltonian we have < ny >=<ng >, we also have < n; > + < ny >= 2, thus we have

<y >=<ng>=1 (6)
this symmetry argument holds also at finite temperature and we have
<y >p=<ng >r=1 (7)
1c) For the ground state we have < G|H|G >= E¢g by using the equation for Hamiltonian we have

<GH|G > =6 < Gm|G > +6 < Gna|G > —t > < Glel ,e2,0 + hoclG >

= 26—1&2 < G|cl{1602,g+h.c|G >=FEqg=2(e—1t) (8)

o

Thus we have )~ < G|CLUCQ¢7 + h.c|G >=2.

1d) By using equations (4) and (5) we have
<\I(?T) ) —|TL1|—, _5T7\L> = 2|al_|2
< 0'/,0', _a+|n1|_a+aaa U/ > = |CY;|2 + |af|2 =
<Lttt 4,1, 4> = 2l P



For the average number of particles at site 2, we need just to change subscript 1 — 2. For the Ground state we have
A
VAZ 412
A
VAZ 4 2
For very large A we have < n; >= 2 and < n; >= 0, which is very sensible result.
At very very large temperatures compared to € and A, we expect that all states be equally probable and we should
have < ny >=< ny >= 1. Let us check this result for finite temperature we have

<ng>=1+

<ng>=1-— (10)

1
<ng >= E Z < m|n1|m > e PEm

By use of (9) we have

1 — 2 2 — 2 2 —
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A " sinh 28/ A2 + 2
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For very large T' we have , § ~ 0 and

-1+ (11)

<ni>~1 (12)

The average number < n; > as function of temperature is depicted in following graph for different values of A/t

<n;>
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2a) The number of particles, N, parity P = 4+ and energies F, are given in Table 1. The energy of the vacuum
state is clearly zero since it is annihilated by the hopping term (x ¢) and also the interaction term. The energy of the
only possible 2-particle state, with one particle on each site, is simply V since no hopping is possible from this state.
A basis of single particle states is ¢! |0) and ¢f|0). These are unaffected by the interaction term since f is zero in the
first and n; in the second. The hopping term just introduces an off-diagonal mixing of these 2 states corresponding

to the matrix:
0 —t
e (%), 13

The eigenvalues, corresponding to symmetric and anti-symmetric combinations of the basis states (i.e. wave-vector 0
or 7) are Ft respectively.
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3) We can readily solve this problem by going to momentum space for the ¢ and d particles. This gives:

H=-Y" [EO(E)cjgc,; + 1V (chdy + h.c.)} . (15)
Here:
oK) = —2t Z cos(k;a) (16)

the usual tight-binding dispersion relation. h.c. stands for the Hermitean conjugate of the previous term. We now

[ elk) tv
Hk_(?tV o)' (17)

get a 2 X 2 matrix each for eacah value of k:

with the 2 energy bands:

e (F) = eo(k) /2 + /o (k)2 /4 + 12V2. (18)

Spin was not mentioned in the statement of this problem. If we include it we simply get identical bands for spins up
and down.

4) We may write a spectral decomposition for the electron Green’s function:
ImGlet (5 w) = —*? (1 + ) Z| (n|eglm)2ePEmS(w + Ep — En). (19)
(This actually differs from the decomposition that I derived in class in which the factor of ¢/ was replaced by e~

and the factor of e #Pm by e=#Fn_ These are easily seen to be the same using E,, = FE,, + w which follows from the
d-function.) Using the d-function again, and cancelling the np(w) factors, we obtain:

> dw . _
/ —nF(w)wQGret(p’ = ——GBQZ E — E 7’L|Cﬁ|m>|2€ BEm’. (20)

oo 2m
Now observing that:
(En = Em){n|ezlm) = (n|[H, cgllm) (21)

we may rewrite this as:

| e Greg () = 3% Sl ) (. i) (22)

77"7

Note that I switched the order of the two matrix elements in order to make it clear that there is a sum over a complete

set of states here:
> olnynl =1 (23)

which may be dropped, leaving;:

> dw . 1 _
/ %np(w)wQGret(p,w): §eBQZ<m|[H, ch)H, cgl[m)e™ . (24)

Finally we recognize this as the Boltzmann average of the product of commutators:

[ S Greqli) = 5LH I, el (25)



