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Physics 503 Problem Set 1 Solutions

The Hamiltonian could be written in the following form

H =
∑

σ

(c†1σ c†2σ)

(

ǫ1 −t
−t ǫ2

)(

c1σ
c2σ

)

(1)

We could simply diagonalized this Hamiltonian. In terms of transformed operators the Hamiltonian will be

H =
∑

σ

E+e
†
+σe+σ + E−e

†
−σe−σ (2)

Where, by assuming that ǫ1 = ǫ−∆ and ǫ2 = ǫ+∆ we have

E± = ǫ ±
√

∆2 + t2 (3)

and e±,σ = α±
1 c1,σ + α±

2 c2,σ with α±
i is given by

α−
1 =

√

1 + ∆√
∆2+t2√
2

α−
2 =

√

1− ∆√
∆2+t2√
2

α+
1 = −

√

1− ∆√
∆2+t2√
2

α+
2 =

√

1 + ∆√
∆2+t2√
2

(4)

In terms of the transformed operators the two-particle eigenstates are given by

|−,−, ↑, ↓> = |Ground >= e†−,↑e
†
−,↓|0 > EG = 2E− = 2(ǫ−

√

∆2 + t2)

|−,+, σ, σ′ > = e†−,σe
†
+,σ′ |0 > E−+ = E− + E+ = 2ǫ

|+,+, ↑, ↓> = e†−,↑e
†
−,↓|0 > E++ = 2E− = 2(ǫ+

√

∆2 + t2)

(5)

these are all the six eigenstates and eigenvalues of the Hamiltonian, for two electron system. The ground state is
given by |Ground > and its energy is EG = 2(ǫ−

√
∆2 + t2).

1a) For ∆ = 0 we have EG = 2(ǫ− t), and the eigenstate is given by |G >= 1

2
(c1,↑ + c2,↑)

†(c1,↓ + c2,↓)
†|0 >.

1b) The Hamiltonian is symmetric under parity. Thus H → H as if c1 ←→ c2, thus it means for any eigenstate of the
Hamiltonian we have < n1 >=< n2 > , we also have < n1 > + < n2 >= 2, thus we have

< n1 >=< n2 >= 1 (6)

this symmetry argument holds also at finite temperature and we have

< n1 >T=< n2 >T= 1 (7)

1c) For the ground state we have < G|H |G >= EG by using the equation for Hamiltonian we have

< G|H |G > = ǫ1 < G|n1|G > +ǫ2 < G|n2|G > −t
∑

σ

< G|c†1,σc2,σ + h.c|G >

= 2ǫ− t
∑

σ

< G|c†1,σc2,σ + h.c|G >= EG = 2(ǫ− t) (8)

Thus we have
∑

σ < G|c†1,σc2,σ + h.c|G >= 2.

1d) By using equations (4) and (5) we have

<↓, ↑,−,−|n1|−,−, ↑, ↓> = 2|α−
1 |2

< σ′, σ,−,+|n1|−,+, σ, σ′ > = |α−
1 |2 + |α+

1 |2 = 1

<↓, ↑,+,+|n1|+,+, ↑, ↓> = 2|α+
1 |2

(9)
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For the average number of particles at site 2, we need just to change subscript 1→ 2. For the Ground state we have

< n1 > = 1 +
∆√

∆2 + t2

< n2 > = 1− ∆√
∆2 + t2

(10)

For very large ∆ we have < n1 >≈ 2 and < n1 >≈ 0, which is very sensible result.
At very very large temperatures compared to ǫ and ∆, we expect that all states be equally probable and we should
have < n1 >=< n2 >= 1. Let us check this result for finite temperature we have

< n1 >=
1

Z

∑

< m|n1|m > e−βEm

By use of (9) we have

< n1 > =
1

4 + 2 cosh2β
√
∆2 + t2

(

2|α−
1 |2e2β

√
∆2+t2 + 2|α+

1 |2e−2β
√
∆2+t2 + 4(|α−

1 |2 + |α+
1 |2)

)

= 1 +
∆√

∆2 + t2
× sinh 2β

√
∆2 + t2

2 + cosh 2β
√
∆2 + t2

(11)

For very large T we have , β ≈ 0 and

< n1 >≈ 1 (12)

The average number < n1 > as function of temperature is depicted in following graph for different values of ∆/t
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2a) The number of particles, N , parity P = ± and energies E, are given in Table 1. The energy of the vacuum
state is clearly zero since it is annihilated by the hopping term (∝ t) and also the interaction term. The energy of the
only possible 2-particle state, with one particle on each site, is simply V since no hopping is possible from this state.

A basis of single particle states is c†1|0〉 and c†2|0〉. These are unaffected by the interaction term since n̂2 is zero in the
first and n̂1 in the second. The hopping term just introduces an off-diagonal mixing of these 2 states corresponding
to the matrix:

H =

(

0 −t
−t 0

)

. (13)

The eigenvalues, corresponding to symmetric and anti-symmetric combinations of the basis states (i.e. wave-vector 0
or π) are ∓t respectively.

N P E Eigenstate

0 + 0 |0, 0〉
1 + -t (c†1|0〉+ c†2|0〉)/

√
2

1 - t (c†1|0〉 − c†2|0〉)/
√
2

2 - V |1, 1〉

(14)
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3) We can readily solve this problem by going to momentum space for the c and d particles. This gives:

H = −
∑

~k

[

ǫ0(~k)c
†
~k
c~k + tV (c†~kd~k + h.c.)

]

. (15)

Here:

ǫ0(~k) ≡ −2t
3
∑

i=1

cos(kia) (16)

the usual tight-binding dispersion relation. h.c. stands for the Hermitean conjugate of the previous term. We now

get a 2× 2 matrix each for eacah value of ~k:

H~k
=

(

ǫ0(~k) tV

tV 0

)

. (17)

with the 2 energy bands:

ǫ±(~k) ≡ ǫ0(~k)/2±
√

ǫ0(~k)2/4 + t2V 2. (18)

Spin was not mentioned in the statement of this problem. If we include it we simply get identical bands for spins up
and down.

4) We may write a spectral decomposition for the electron Green’s function:

ImGret(~p, ω) = −eβΩ
(

1 + eβω
)

π
∑

n,m

|〈n|c~p|m〉|2e−βEmδ(ω + En − Em). (19)

(This actually differs from the decomposition that I derived in class in which the factor of eβω was replaced by e−βω

and the factor of e−βEm by e−βEn . These are easily seen to be the same using Em = En + ω which follows from the
δ-function.) Using the δ-function again, and cancelling the nF (ω) factors, we obtain:

∫ ∞

−∞

dω

2π
nF (ω)ω

2Gret(~p, ω) = −
1

2
eβΩ

∑

n,m

(En − Em)2|〈n|c~p|m〉|2e−βEm . (20)

Now observing that:

(En − Em)〈n|c~p|m〉 = 〈n|[H, c~p]|m〉 (21)

we may rewrite this as:
∫ ∞

−∞

dω

2π
nF (ω)ω

2Gret(~p, ω) =
1

2
eβΩ

∑

n,m

〈m|[H, c†~p]|n〉〈n|[H, c~p]|m〉e−βEm . (22)

Note that I switched the order of the two matrix elements in order to make it clear that there is a sum over a complete
set of states here:

∑

n

|n〉〈n| = I (23)

which may be dropped, leaving:
∫ ∞

−∞

dω

2π
nF (ω)ω

2Gret(~p, ω) =
1

2
eβΩ

∑

m

〈m|[H, c†~p][H, c~p]|m〉e−βEm . (24)

Finally we recognize this as the Boltzmann average of the product of commutators:
∫ ∞

−∞

dω

2π
nF (ω)ω

2Gret(~p, ω) =
1

2
〈|[H, c†

~p
][H, c~p]|〉. (25)


