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Physics 503 Midterm Exam - Solutions
1) Since the model is non-interacting, we just need to solve the Schroedinger equation for single particle states,

corresponding to the matrix:

h =

(
∆ −t
−t −∆

)
. (1)

The single particle eigenvalues are

ε± = ±
√
t2 + ∆2. (2)

We can put at most one (spin-up) electron in each single particle state. The total energy of each state is the sum of
the single particle energies of the electrons in it. So the complete spectrum, labelled by number of electrons, is:

n E

0 0

1 −
√
t2 + ∆2

1
√
t2 + ∆2

2 0

(3)

2) Taylor expanding and using: ∫
dψ̄1dψ1dψ̄2dψ2ψ̄1ψ1ψ̄2ψ2 = 1, (4)

we obtain ∫
dψ̄1dψ1dψ̄2dψ2 exp[−ε1ψ̄1ψ1 − ε2ψ̄2ψ2 − λψ̄1ψ1ψ̄2ψ2] = ε1ε1 − λ. (5)

3a) To see whether λ increases or decreases in magnitude we should check the sign of dλ/λ. Noting that d lnD < 0
as we lower the cut-off energy, we see that dλ/λ is positive for c = −1 and negative for c = 1, regardless of the sign
of λ0. Therefore λ increases in magnitude for c = −1, cases ii) and iv) but decreases in magnitude for c = 1, cases i)
and iii). For c = 1, cases i) and iii), λ keeps on decreasing as we lower the cut off scale, D, so we don’t need to know
the high order terms in the β-function to conclude that it will renormalize to zero. On the other hand, for c = −1,
cases ii) and iv), λ increases as we lower the cut off scale, eventually becoming O(1) so that higher order terms in the
β-function will eventually become important.
b) The value of the renormalized coupling, λ, at a reduced cut off scale, D is given by∫ λ

λ0

dλ

λ3
≈ c ln(D/D0) (6)

giving:

1

λ20
− 1

λ2
≈ 2c ln(D/D0). (7)

Since D < D0, this implies that if c = 1 the right hand side of Eq. (7) is negative and therefore |λ| < |λ0| and λ goes
to zero as:

λ→ sign(λ0)

[2 ln(D0/D)]1/2
. (8)

On the other hand, if c = −1, |λ| grows as D is reduced and equals one at a value of D given approximately by:

1

λ20
≈ 2 ln(D0/D) + 1 ≈ 2 ln(D0/D). (9)

Identifying this value of D with TK and solving gives:

TK ∝ D0 exp[−1/(2λ20)]. (10)
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[Keeping the 1 on the right hand side of Eq. (9) only changes the prefactor in Eq. (10) by a factor of order 1.]
REMARK: In this case the characteristic energy scale, as a function of the bare coupling, is even smaller than in the
Kondo model with its quadratic β-function.

4a) Noting that acting with ψ on any states lowers its energy by ε, we may write:

ψ(t) = e−iεtψ. (11)

In thermal equilibrium:

< ψ†ψ > = nF (βε)

< ψψ† > = 1− nF (βε). (12)

(The first line above follows since ψ†ψ is the number operator. The second line follows using ψψ† = 1 − ψ†ψ.)
Therefore,

GT (t) = −ie−iεt[1− nF ], (t > 0)

= ie−iεtnF , (t < 0). (13)

This can also be written:

GT (t) = ie−iεt[nF − θ(t)]. (14)

b)

GT (ω) = inF

∫ 0

−∞
dte[i(ω−ε)+η]t − i[1− nF ]

∫ ∞
0

dte[i(ω−ε)−η]t

=
nF

ω − ε− iη
+

1− nF
ω − ε+ iη

. (15)

This can also be written:

GT (ω) = 2πinF δ(ω − ε) +
1

ω − ε+ iη
. (16)

c)

Im[GT (ω)] = [nF − (1− nF )]πδ(ω − ε). (17)

Thus:

g(βε) = 1− 2nF (βε) = tanh(βε/2). (18)

REMARK: It can easily be proven in general for any Hamiltonian including interaction effects, using the spectral
decomposition, that:

Im[GT (ω)] = tanh(βω/2)Im[GR(ω)]

Re[GT (ω)] = Re[GR(ω)]. (19)

See, for example, Appendix 2 of Doniach and Sondheimer, Green’s Functions for Solid State Physicists. At zero
temperature these reduce to:

Im[GT (ω)] = sign(ω)Im[GR(ω)]

Re[GT (ω)] = Re[GR(ω)]. (20)

It is interesting to note that GT is the analytic continuatiion of G, the imaginary time Green’s function, in time
domain but not in frequency domain. On the other hand, GR(ω) is the analytic continuation of G(iωn) as discussed in
class. This is one of the reasons why the retarded Green’s function is more widely used in condensed matter physics
than the real-time time-ordered Green’s function. One is easily obtained from the other, in general, using Eq. (19).


