fMRI analysis of functional brain connectivity in three language tasks in schizophrenia

1

¹Department of Physics and Astronomy, University of British Columbia 6224 Agricultural Road, Vancouver, British Columbia, Canada, V6T 1Z1

Acknowledgements:

OUTLINE

- 1. Motivation
- 2. Theory
- 3. Experiment Details
- 4. Resources
- 5. Summary

POSITIVE

Hallucinations
Delusions

COGNITIVE

Impaired memory, attention & executive function

SYMPTOMS

NEGATIVE

Poverty of Speech Flat Affect

DISORGANIZED

Disorganized affect & speech

- Treatment Options
 - Pharmaceuticals
 - Typical & AtypicalAntipsychotics
 - Side effects, moderateefficacy & resistance

- Treatment Options
 - Cognitive Therapy
 - Cognitive Behavioural Therapy (CBT)
 - *Metacognitive Training (MCT)*
 - Moderate efficacy

Pharmaceuticals

Cognitive Therapy

Adjunct & Improved Treatments

- Side effects
- Limited efficacy
- Resistance

Limited efficacy

• Ex. Neuromodulation

1.2 Neuromodulation

- Neurons & Brain Networks
 - Neurons = nervous system cells
 - Communicate by releasing
 neurotransmitters upon electrical
 impulses

1.2 Neuromodulation

- Neurons & Brain Networks
 - Found in networks throughout brain
 - Brain network activity can change

1.2 Neuromodulation

- Neuromodulation
 - Modify neural oscillatory electrical signals to increase or decrease the likelihood of neuron activation
 - Transcranial Alternating Current Stimulation

1.3 Contribution of fMRI

Neuromodulation

• Requires spatial and temporal resolution

		fMRI	EEG
1 S	PATIAL	3-5 mm	cm
2 T	EMPORAL	1-3 s	ms
\mathcal{J}	ISEFUL TO MEASURE	BOLD signal	Neuron firing patterns

1.3 Contribution of fMRI

BOLD Signal = Blood Oxygenation Level Dependent Signal

1.3 Contribution of fMRI

• Neuromodulation

• Requires spatial and temporal resolution

		fMRI	EEG
1	SPATIAL	3-5 mm	cm
2	TEMPORAL	1-3 s	ms
3	USEFUL TO MEASURE	BOLD signal	Neuron firing patterns

THEORY

- 2. Theory
 - 1. Functional Magnetic Resonance Imaging (fMRI)
 - 2. BOLD Signal
 - 3. fMRI-Constrained Principal Component Analysis (fMRI-CPCA)

- Nuclear Magnetic Resonance
 - Magnetic moment of protons from
 H nuclei in water
 - \circ Tip away from B_0
 - Precession frequency: $\boldsymbol{\omega} = \boldsymbol{\gamma} B_0$

15

- Signal Localization
 - o RF pulse selects slice
 - Frequency & Phase encoding
 gradients localize within slice

• Echo Planar Imaging

2.2 BOLD Signal

Oxyhemoglobin Diamagnetic

↓ magnetic susceptibility

 $\uparrow T_2^*$

↑ Intensity

Deoxyhemoglobin = Paramagnetic

↑ magnetic susceptibility

 $\downarrow T_2^*$

↓ Intensity

• fMRI-CPCA

- Determine functional brain networks
- Estimate post-stimulus BOLD signal changes
- Test effects of experimental manipulations

Multivariate Least-squares Linear Regression

2.3 fMRI-CPCA

• Z Activation Matrix

- G Design Matrix
 - Encodes task timing
 - Scans X Conditions at post-stimulus time
 - Finite Impulse Response model
 - Expected signal: 1
 - Otherwise: 0

• Z matrix regressed onto G matrix with multivariate leastsquares linear regression

$$C = (G'G)^{-1}G'Z$$

• Principal Component Analysis extracts components from GC

• Columns represent component loadings, or anatomical correlates of

each brain network

Component Loadings

Right Singular Vectors D

Singular Values

√(m-1)

• Predictor weights indicate importance of each column in G for a given component

• Predictor weights plotted against time give the hemodynamic response (HDR) for the component

Multivariate Least-squares Linear Regression

2.3 fMRI-CPCA

Experiment Details

- 3. Experiment Details
 - 1. Language Tasks
 - 2. Functional Brain Networks
 - 3. Procedure

3.1 Language Tasks

3.1 Language Tasks

3.1 Language Tasks

3.3 Procedure

4. Resources

- Access to MS, TGT and SA datasets
- SPM 8 Software
- fMRI-CPCA Software
- SPSS Software
- Computer time

5. Summary

• fMRI may be used to examine BOLD signal

• Determine functional networks from three language tasks in both healthy controls and schizophrenia patients with fMRI-CPCA

• Increase understanding of spatial localization of brain networks and influence potential neuromodulation methods for schizophrenia patients