Magnetotransport in Dual-Gated Bilayer Graphene
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Bilayer graphene, two single-atom-thick sheets of carbon stacked upon each other, is a unique
system in which the size of the band gap can be continuously tuned through the application of a
perpendicular electric field. We propose to fabricate dual-gated bilayer graphene electronic devices
in which this effect can be realized. We will then measure magnetoconductivity in such devices at
temperatures below 4 K to probe weak localization, a quantum interference effect. By examining
the effects of a variable band gap on weak localization, we hope to gain further physical insight into

electronic transport in bilayer graphene.

PACS numbers:

I. MOTIVATION

Since its first isolation in 2004 [1], graphene, a single-
atom-thick sheet of carbon arranged in a honeycomb
lattice, has continued to fuel enormous amounts of re-
search activity. While its very existence is remarkable,
defying a long-standing prediction that two-dimensional
crystals are thermodynamically unstable [2, 3], its elec-
tronic properties are even more fascinating and hold
much promise for technological and scientific advance-
ments alike. High charge carrier mobilities in graphene
give it potential to replace silicon in transistor applica-
tions. Long coherence times make it a candidate material
for future quantum computers. From a physics point of
view, graphene’s massless charge carriers travelling at an
effective speed of light (~ 10° m/s) [4] is an example of
quantum electrodynamics witnessed outside the confines
of large particle accelerators. Also, its honeycomb lattice
is composed of two triangular sublattices (Figure 1(a)),
and the electronic density can be on one sublattice or the
other, or a superposition of both. This two-level sublat-
tice degree of freedom is analogous to spin—% and is ap-
propriately called pseudospin. Unlike spin—%, it does not
couple to an external magnetic field, but it results in ex-
otic quantum hall behaviour in graphene [5, 6]. With the
abundance of unique properties in graphene, this year’s
awarding of the Nobel Prize in Physics to its discoverers
a mere six years after its discovery is clearly not unwar-
ranted.

Unlike other semiconductors, graphene has no band
gap and exhibits a sizable finite conductivity even at zero
charge carrier density [5, 6]. While this is physically in-
teresting, it is a severe hindrance to the realization of
graphene transistors, which require a conducting (on)
and an insulating (off) state. Much of this motivates
the study of bilayer graphene (BLG), two single-atom-
thick sheets of carbon stacked upon each other. Under
normal conditions, BLG also lacks a band gap. However,
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it possesses a novel feature: when a perpendicular elec-
tric field is applied across the two sheets of the bilayer,
a band gap is opened and its size can be continuously
tuned [7-9]. This is easily achieved in a dual-gated BLG
electronic device [8, 9]. Thus, this tuning of the band
gap in bilayers offers a possible path towards fabricating
graphene transistors.

In light of transistor applications, many experiments
on bilayers have focused on opening larger band gaps
and characterizing their size (e.g., Refs. 9-11). However,
the physical properties of BLG with an electrostatically-
opened band gap (called biased BLG) are equally as in-
teresting. Biased BLG has been the subject of much
theoretical investigations, with predictions ranging from
hyperbolic energy dispersions [7] to ferromagnetic states
[12] to unusual Landau level behaviour [13]. Many of
these phenomena are best probed by magnetotransport
measurements, i.e., electrical measurements of conduc-
tivity in the presence of a magnetic field, in dual-gated
BLG devices. Presently, most magnetotransport mea-
surements in dual-gated BL.G have focused on the high
field (B > 1 T) regime (e.g., Refs. 14, 15). To our knowl-
edge, there has been no experimental work in the low-
field (B < 1 T) regime. Thus, we propose to study low-
field magnetotransport in dual-gated bilayer graphene.

Low-field magnetotransport measurements in 2D sys-
tems often involve studies of weak localization (WL), a
quantum effect arising from the interference of electron
waves. From examining WL, the inelastic dephasing rate
can be extracted, and in graphene, additional elastic elec-
tron scattering rates can also be obtained [16, 17]. To-
gether, these scattering rates and their dependencies on
different parameters provide physical insight into elec-
tronic transport in graphene. For example, the linear
temperature dependence of the dephasing rate Ty s
an indication that electron-electron interactions are the
main mechanism for inelastic scattering [16, 17]. As an-
other example, graphene is usually rippled, and the de-
pendence of 7, ' on a magnetic field applied in the av-
erage plane of the graphene flake allows for an estimate
of ripple size [18]. In dual-gated BLG, we can exploit
the tunable band gap as an extra parameter with which



to study WL. By analyzing how the different scattering
rates change with the band gap size, we hope to gain a
more complete understanding of electronic transport in

BLG.

II. THEORY

We review the band structure of graphene and the ori-
gins of the tunable band gap in BLG. We then discuss
weak localization theory both in a general setting and in
the specific context of graphene.

A. Band Structure of Graphene

Graphene’s energy bands are derived from a tight-
binding Hamiltonian, and near certain points in k-space
called the Dirac points, the bands can be expanded in the
low energy limit to yield to following energy dispersion
relation:

Ei %UF|k|a (1)

where vp is the Fermi velocity and k is the momentum
measured with respect to the Dirac point [19]. This linear
energy dispersion gives rise to massless charge carriers,
and indeed Eq. 1 is reminiscent of the photon equation
E = pc. Also, as seen in Figure 1(b), the valence and
conduction bands intersect at E = 0, so there is no band

gap-

(@) (c)
= £3
T ‘
|
®) \E \E

Conduction

/ Valence
|

Valence
|

FIG. 1: (a) (from Ref. 8) The honeycomb lattice of monolayer
graphene can be decomposed into two interwoven triangular
sublattices, labelled by green and red. (b) Linear energy dis-
persion of monolayer graphene. The valence and conduction
bands intersect at the origin, resulting in zero band gap. (c)
(from Ref. 8) BLG has a total of four sublattices, but only
two (labelled A1 and B2) are relevant in low energy consider-
ations. (d) The gapless quadratic energy dispersion (red) of
bilayer graphene becomes gapped and hyperbolic (blue) upon
application of a perpendicular electric field.

Physically, this zero band gap originates from the fact
that graphene’s hexagonal lattice can be decomposed into
two triangular sublattices (see Figure 1(a)), and the two
sublattices are degenerate. To open a band gap, we could
introduce an energy difference betweeen the sublattices,
but since they are interwoven and lie in the same plane,
this is difficult to implement experimentally.

Bilayer graphene consists of a total of four triangular
sublattices, but it happens that only two of these sublat-
tices, labelled A1 and B2 in Figure 1(c), are relevant in
the low energy limit [8]. Its energy dispersion is quadratic
(Figure 1(d)) and results in massive charge carriers, but
again is not gapped. This also arises from the degen-
eracy of the sublattices A1l and B2, except in this case,
the two sublattices lie on different planes. Thus, the ap-
plication of a perpendicular electric field will induce a
potential difference between A1 and B2 and open a gap
in the energy dispersion (Fig. 1(d)).

B. Weak Localization [20]

In the path integral formulation of quantum mechan-
ics, the probability associated with a particle moving
from points A to B is given by the magnitude-squared
of some complex amplitude ¥ 4_,g. This amplitude is
computed by summing over the individual contributions
¥; = A;e'® from every possible trajectory between A
and B (Figure 2(a)):

\I/A—>B = Z Azezd)l (2)

all paths

This probability of propagation can be associated with
conductivity in 2D systems when electron transport is
diffusive. At low temperatures, inelastic scattering is re-
duced, allowing electrons to maintain phase coherence
over long distances; i.e., the relative phases A¢; between
the different possible trajectories in Fig. 2(a) are con-
stant over some characteristic length. This allows for
constructive and destructive interference when the indi-
vidual contributions A;e*®: are summed. Normally, the
phases between the possible trajectories are uncorrelated
and average out in the sum in Eq. 2, and the resulting
conductivity is that of the classical Drude conductivity,
with no input of quantum mechanics.

The situation is different, however, in the case of a
closed loop trajectory. When time-reversal symmetry is
present, the closed loop path and its counterpropagating
partner accumulate the same phase, so the contributions
from these two trajectories interfere constructively (Fig-
ure 2(b)). Thus, the probability for closed loop paths, in
which electrons remain ”localized,” is enhanced, result-
ing in an overall decrease in conductivity. This is weak
localization - a negative correction term to the classical
Drude conductivity originating from quantum interfer-
ence considerations.

Physically, only the total conductivity, ¢ = gprude +
Agwr, where Agy < 0, is readily measured. To probe
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FIG. 2: (a) Feynman path integral formalism. The complex
amplitude associated with the probability of a particle moving
from points A to B is given by the sum of individual contribu-
tions v; from all possible trajectories between A and B. (b)
The closed-loop trajectory 1; interferes constructively with
its time-reversed partner i _;, resulting in weak localization.
(c) Suppression of weak localization in a magnetoconductivity
g(B1) trace. As the magnitude of B, increases, g is restored.

WL, we need to examine magnetoconductivity, the de-
pendence of conductivity on magnetic field. A small
perpendicular magnetic field B, has the effect of break-
ing the symmetry between a closed loop trajectory and
its time-reversed partner. The two paths now accumu-
late different phases and constructive interference is lost,
restoring the total conductivity. The resulting g(B))
curve is shown in Figure 2(c): ¢ has a minimum at zero
field, and rises monotonically with increasing field.

In most 2D systems, the functional form of the mag-
netoconductivity ¢g(B,) depends only on the inelastic
dephasing rate, 7, '. In graphene however, due to the
pseudospin degree of freedom, WL is also affected by the
elastic intervalley scattering rate 7[1 and the elastic in-
travalley scattering rate 7, 1. Thus, the situation is much
more complicated in graphene, and the precise balance
of these three scattering rates determines whether WL is
suppressed or enhanced, or whether weak antilocalization
(WAL) is observed instead [21].

III. DEVICE FABRICATION AND DUAL-GATE
GEOMETRY

Flakes of monolayer and bilayer graphene are produced
by mechanically-exfoliating graphite pieces with Scotch
tape and transfering the graphitic residue from the tape
to Si wafers. The Si substrate has a ~ 300 nm-thick
overlayer of SiOo, which allows a thin-film interference
effect to take place. This causes atomically-thin and
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FIG. 3: (a) The charge carrier density of a graphene flake can
be capacitatively tuned by applying a back gate voltage. (b)
A full dual-gated BLG device. (c) Alternatively, we can view
the bottom gate as one plate of a capacitor and the top gate
as another. By applying Ve and Vre in opposite polarities,
we can establish an electric field across the bilayer flake.

transparent graphene flakes to be visible under an op-
tical microscope, and even their number of layers to be
resolved. Next, the flakes are contacted with Au elec-
trodes through electron-beam lithography with scanning
electron microscopy in order to fabricate micron-sized
graphene electronic devices.

The Si/SiO4 substrate also serves as a back gate. If we
visualize the graphene flake as one plate of a capacitor,
the Si as another and the SiO5 in between as an insulating
dielectric layer, then the charge carrier density of the
flake can be capacitatively tuned by applying a back gate
voltage (Figure 3(a)). Similarly, we can construct a top
gate by depositing some insulating material on top of the
flake, followed by another metal electrode (Figure 3(b)).
Now we have two gates, and by applying voltages of the
same polarity to both gates, an increased charge carrier
density can be induced.

Alternatively, we can view the bottom and top gates as
a single capacitor with the graphene flake as something
sandwiched in between (Figure 3(c)). Then if we ap-
ply voltages of opposite polarities to the bottom and top
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FIG. 4: Three main cooling mechanisms of the dilution fridge:
(a) Thermal contact between the fridge and a reservoir of lig-
uid *He through an exchange gas brings the fridge tempera-
ture down to 4 K. (b) Pumping on liquid “He further lowers
the temperature via evaporative cooling down to 1 K. (c) In
the mixing chamber, a 3He/ 4He mixture separates into a >He-
rich phase and a *He-poor phase. The crossing of a *He atom
from the rich to poor phase is endothermic and provides fur-
ther cooling down to 20 mK.

gates, a perpendicular electric field across the graphene
is generated. This is how a tunable band gap can be
achieved in a dual-gated BLG device.

Most top gate fabrication procedures require two steps:
Deposition of an insulating layer, then fabrication of
a metal electrode over the insulating layer. However,
Miyazaki et al. discovered that when they evaporated Al
directly onto graphene then exposed the entire device to
air, an insulating oxide layer spontaneously formed be-
tween the graphene-Al interface[22]. This one-step pro-
cedure produces highly efficient top gates and we propose
to fabricate most of our devices in this manner.

IV. MEASUREMENT AND APPARATUS

Electrical measurements of micron-sized devices in-
volve currents on the scale of nanoamps. To extract such
tiny signals embedded in a noisy environment, we use
SR830 lock-in amplifiers and Ithaco current preampli-
fiers.

Many quantum mechanical phenomena, including
weak localization, are often enhanced at temperatures
below 4 K. The Quantum Devices Lab has an Oxford
dilution fridge with a base temperature 20 mK. The re-
figeration process involves three main steps. First, the
fridge is brought in thermal contact with a bath of lig-
uid *He, which has a boiling point of 4 K (Figure 4(a)).
Next, a pump is applied to a certain portion of that lig-
uid “He contained in a 1 K pot, and the evaporation of
4He cools the pot down to 1 K (Figure 4(b)). Finally,
the 1 K pot is used to cool a mixture of *He/“He until a
phase separation between a >He-rich phase and *He-poor
phase is attained. The crossing of a >He atom from the
rich phase to the poor phase is endothermic and provides
cooling down to 20 mK.

The dilution fridge also has a small superconducting
magnet. Magnetic fields up to ~ 200 mT can be applied.

V. PLANNED SCHEDULE

Task
Fabrication of dual-gated BLG
devices in AMPEL cleanroom
Measurement of device in Aug
dilution fridge

Date
June-July

Data analysis Sept-Oct
Further device fabrication and Nov-Dec
measurement

Further data analysis and progress Jan-Feb
report

Thesis write-up Mar
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