Motivation Background Theory Project Details Summary

Topological Quantum Error Correction in Silicon Photonics

The University of British Columbia

November 20, 2018

Overview

- Motivation
 - What is Quantum Computing?
- 2 Background Theory
 - Quantum Dots
 - Photonic Crystal Cavities
 - Quantum Error Correction
- 3 Project Details
 - Topological Quantum Error Correction
 - Entangling Gate
 - Losses in Photonic Circuits
 - Resources and Schedule
- Summary

Feynman's idea: Simulate quantum systems using other quantum systems

Feynman's idea: Simulate quantum systems using other quantum systems

Feynman's idea: Simulate quantum systems using other quantum systems

Quantum algorithms:

Prime Factorization: Exponential speedup

Feynman's idea: Simulate quantum systems using other quantum systems

- Prime Factorization: Exponential speedup
- Discrete Logarithm: Exponential speedup

Feynman's idea: Simulate quantum systems using other quantum systems

- Prime Factorization: Exponential speedup
- Discrete Logarithm: Exponential speedup
- Unstructured Database Search: Square root speedup

Feynman's idea: Simulate quantum systems using other quantum systems

- Prime Factorization: Exponential speedup
- Discrete Logarithm: Exponential speedup
- Unstructured Database Search: Square root speedup
- Solutions to Linear Systems: Exponential speedup

Classical and Quantum Computation

 Classical: bits can be either 0 or 1, invertible and non-invertible gates applied to bit strings like 1011

input		output		
Χ	У	Х	y+x	
0	0	0	0	
0	1	0	1	
1	0	1	1	
1	1	1	0	

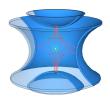
Classical and Quantum Computation

 Classical: bits can be either 0 or 1, invertible and non-invertible gates applied to bit strings like 1011

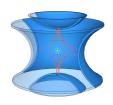
• Quantum: bits are $|0\rangle$ or $|1\rangle$, unitary operations applied to bit strings $|1011\rangle$

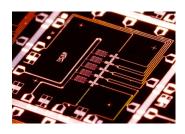
•						
input		output				
X	У	ху	+x			
0)	0)	0}	0}			
0)	1)	0}	1)			
1)	0)	1}	1)			
1)	1)	1)	0}			

Experimental Realizations

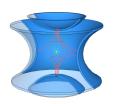


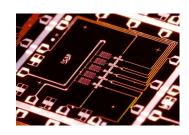
Experimental Realizations

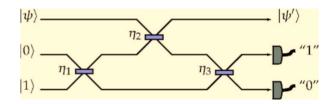




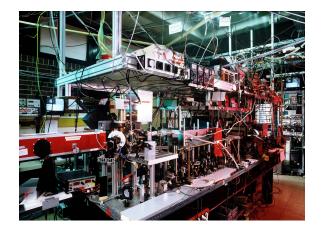
Experimental Realizations





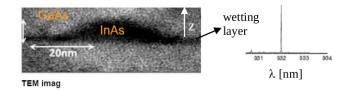


Experimental Difficulties



Pure quantum states are extremely fragile

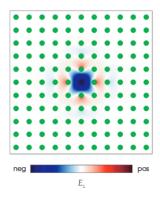
Quantum Dots



$$V(x, y, z) = \begin{cases} \frac{1}{2}m^*\omega_0^2(x^2 + y^2), & |z| < \frac{L}{2} \\ \infty, & |z| > \frac{L}{2} \end{cases}$$

Photonic Crystal Cavities

• Permitivity of material varies periodically: $\mathbf{D}(\mathbf{r}) = \varepsilon(\mathbf{r})\mathbf{E}(\mathbf{r})$, $\varepsilon(\mathbf{r}) = \varepsilon(\mathbf{r} + \mathbf{R})$.



Quantum Error Correction

Encode information using redundancy

$$\begin{array}{l} |0\rangle \rightarrow |000\rangle \\ \\ |1\rangle \rightarrow |111\rangle \end{array}$$

$$1\rangle \rightarrow |111\rangle$$

Quantum Error Correction

Encode information using redundancy

$$|0\rangle \rightarrow |000\rangle$$

 $|1\rangle \rightarrow |111\rangle$

• If 1 qubit gets flipped, we can measure and flip it back:

$$|000\rangle \xrightarrow{\mathsf{Error}} |100\rangle \xrightarrow{\mathsf{Measure}} \sigma_{\mathsf{X}} \otimes \mathbb{I}_2 \otimes \mathbb{I}_2 |100\rangle \to |000\rangle$$

• Pauli Group Π_n : Operators of the form $\sigma_1^{(i_1)} \otimes \cdots \otimes \sigma_n^{(i_n)}$, $i_i = 0, 1, 2, 3$.

• Pauli Group Π_n : Operators of the form $\sigma_1^{(i_1)} \otimes \cdots \otimes \sigma_n^{(i_n)}$, $i_j = 0, 1, 2, 3$.

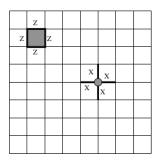
•
$$\sigma^{(0)} = \mathbb{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma^{(1)} = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$\sigma^{(2)} = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma^{(3)} = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- Pauli Group Π_n : Operators of the form $\sigma_1^{(i_1)} \otimes \cdots \otimes \sigma_n^{(i_n)}$, $i_j = 0, 1, 2, 3$.
- $\sigma^{(0)} = \mathbb{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma^{(1)} = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$ $\sigma^{(2)} = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma^{(3)} = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Stabilizer group: A subgroup of Π_n which acts trivially on a set of states, $g|\psi\rangle = |\psi\rangle$ for $g \in \Pi_n$.

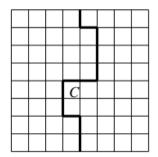
- Pauli Group Π_n : Operators of the form $\sigma_1^{(i_1)} \otimes \cdots \otimes \sigma_n^{(i_n)}$, $i_j = 0, 1, 2, 3$.
- $\sigma^{(0)} = \mathbb{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma^{(1)} = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$ $\sigma^{(2)} = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma^{(3)} = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Stabilizer group: A subgroup of Π_n which acts trivially on a set of states, $g|\psi\rangle = |\psi\rangle$ for $g \in \Pi_n$.
- Example: $\sigma_z \otimes \sigma_z \otimes \sigma_z |000\rangle = |000\rangle \rightarrow |000\rangle$ is stabilized by $\sigma_z \otimes \sigma_z \otimes \sigma_z$. Same for $|110\rangle, |101\rangle, |011\rangle$.

Topological Quantum Error Correction



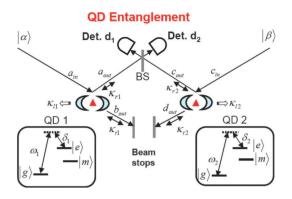
• The number of encoded qubits is 2, regardless of the size of the lattice.

Topological Quantum Error Correction



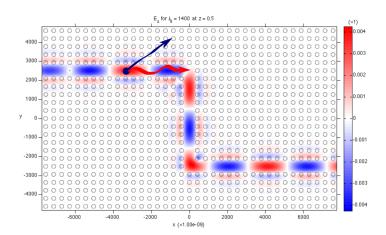
 The number of encoded qubits is 2, regardless of the size of the lattice.

Entangling Gate



Entangling gate proposed by Deepak Sridharan and Edo Waks from the University of Maryland.

Losses in Photonic Circuits



Resources and Schedule

- Photon loss and QEC calculations are being done analytically and using Mathematica.
- Simulations of toric code will be done in Python.

Task	Date
Literature Review	May-Aug
Study effects of photon loss	Sept-Nov
Implement toric code with entangling gate	Dec
Analyze fault tolerance of code	Jan-Feb
Repeat analysis with Colour Code.	Mar
Submit thesis	Apr

Motivation Background Theory Project Details Summary

Acknowledgements

- •
- ۵
- •
- •

Summary

- Quantum error correction will be fundamental in any implementation of quantum information processing.
- Quantum dots in silicon photonic circuits is a promising scalable platform. I will investigate this area further.
- I will develop a scalable architecture using the 2-qubit entangling gate and toric codes as building blocks.