The 3D Schrodinger Eqn. and Spherical Harmonics

$-\hbar \nabla^{2}$
$2 m \quad \Psi+V(r) \Psi=E \Psi$

Schrodinger Eqn

\uparrow

\uparrow

Potential
Total
energy energy energy

$$
\begin{gathered}
\frac{-\hbar \nabla^{2}}{2 m} \Psi+V(r) \Psi=E \Psi \\
\Psi=R(r) Y(\theta, \phi)
\end{gathered}
$$

Schrodinger Eqn

separation ansatz

$$
\begin{array}{r}
\frac{-\hbar \nabla^{2}}{2 m} \Psi+V(r) \Psi=E \Psi \\
\Psi=R(r) Y(\theta, \phi)
\end{array}
$$

Schrodinger Eqn

separation ansatz
$\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{\partial^{2} Y}{\partial \phi^{2}}=-l(l+1) \sin ^{2} \theta Y$ angular equation

$$
\begin{gathered}
2 m \\
\hline \backslash \\
\Psi=R(r) Y(\theta, \phi)
\end{gathered}
$$

Schrodinger Eq

separation ansatz
$\sin \theta \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{\partial^{2} Y}{\partial \phi^{2}}=-l(l+1) \sin ^{2} \theta Y$ angular equation

spherical harmonics

$$
Y_{l}^{m}=\epsilon \sqrt{\frac{(2 l+1)(l-|m|)!}{4 \pi(l+|m|)!}} e^{i m \phi} P_{l}^{m}(\cos \theta)
$$

orthonormal
Condon-Shortley $\epsilon=(-1)^{m} \quad m \geq 0$
phase

$$
\epsilon=1 \quad m<0
$$

$$
\left\langle Y_{l}^{m} \mid Y_{l^{\prime}}^{m^{\prime}}\right\rangle=\delta_{l l} \delta_{m m^{\prime}}
$$

spherical harmonics

$$
\begin{gathered}
Y_{l}^{m}=\epsilon \sqrt{\frac{(2 l+1)(l-|m|)!}{4 \pi(l+|m|)!}} e^{i m \phi} P_{l}^{m}(\cos \theta) \\
\begin{array}{c}
\text { Condon-Shortley } \\
\text { phase }
\end{array} \\
\epsilon=(-1)^{m} \quad m \geq 0 \quad\left\langle Y_{l}^{m} \mid Y_{l^{\prime}}^{m^{\prime}}\right\rangle=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
\epsilon=1 \quad m<0
\end{gathered}
$$

The spherical harmonics are easily visualized by counting the number of zero crossings $\operatorname{Re}[\mathrm{Y}]$ possess in both the latitudinal (theta) and longitudinal directions (phi).

$\phi-$ longitudinal
θ - latitudinal

$$
Y_{0}^{0}(\theta, \phi)=\frac{1}{2} \sqrt{\frac{1}{\pi}}
$$

$$
l=0, m=0
$$

$$
\begin{aligned}
& Y_{1}^{-1}(\theta, \phi)=\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \sin \theta e^{-i \phi} \\
& Y_{1}^{0}(\theta, \phi)=\frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta \\
& Y_{1}^{1}(\theta, \phi)=\frac{-1}{2} \sqrt{\frac{3}{2 \pi}} \sin \theta e^{i \phi} \\
&
\end{aligned}
$$

$$
l=2, m=0, \pm 1, \pm 2
$$

The spherical harmonics are easily visualized by counting the number of zero crossings they possess in both the latitudinal (theta) and longitudinal directions (phi).

They possess $(1-|\mathrm{m}|)$ zeros along the theta direction, and $2|\mathrm{~m}|$ zeros along the phi direction.

This means Y is equal to 0 along m great circles passing through the poles, and along l-m circles of equal latitude.

$Y_{l}^{m}(\theta, \phi)$ is equal to 0 along m great circles passing through the poles, and along I-m circles of equal latitude.
sectoral

$\phi-$ longitudinal θ - latitudinal

Figures from the Wikimedia Commons.
$l=3$
$m=0$
$l-m=3$

$$
Y_{l}^{m}(\theta, \phi)
$$

is equal to 0 along m great circles passing through the poles, and along I-m circles of equal latitude. The function changes sign each time it crosses one of these lines

Hydrogen atom: electron wave function

$$
\Psi_{n, l, m}=A\left(\frac{2 r}{n a}\right) e^{-r / n a}\left[L_{n-l-1}^{2 l+1}(2 r / n a)\right] Y_{l}^{m}(\theta, \phi)
$$

classical picture

Hydrogen atom: electron wave function

Figures from the Wikimedia Commons.

$$
\begin{gathered}
\Psi_{n, l, m}=A\left(\frac{2 r}{n a}\right) e^{-r / n a}\left[L_{\substack{2 l-1}}^{2 l+1}(2 r / n a)\right] Y_{l}^{m}(\theta, \phi) \\
\text { degree of polynomial } \\
n-l-1 \text { radial zeros }
\end{gathered}
$$

Ground state: $n=1, l=0, m=0$

$$
\Psi_{100}=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}
$$

cross-section of the probability density black = zero density, white $=$ highest density

Hydrogen atom: electron wave function

$$
\Psi_{n, l, m}=A\left(\frac{2 r}{n a}\right) e^{-r / n a}\left[L_{n-l-1}^{2 l+1}(2 r / n a)\right] Y_{l}^{m}(\theta, \phi)
$$

First excited state:

$$
\begin{gathered}
n=2, l=0, m=0 \\
n=2, l=1, m=\{-1,0,+1\} \\
4 \text { states }
\end{gathered}
$$

Hydrogen atom: electron wave function

Quantum jumps: quantum state change

Quantum jumps: excitation by absorption of light

Quantum jumps: dexcitation by emission of light

Quantum jumps: dexcitation by emission

Image of atomic Fluorescence

$2 p$ to 2 s transition produces 671 nm (red) light

