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TIIE DELTA-FUNCTION POTENTIAL
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2.5.1 Bound States and Scan€ring States

We have encountered two very different kinds of solutions to thc tine-independent
Scbrodinger equationr For the infinitc squre we and the hamonic oscillator they
arc nonnali.ablc, ^nd labeled by a disctete indd n; for the free particle they ,Ie
non-norn^lizable, and labeled by a continuou: ,ariabk t. The fomle represent
physically realizable states in their own righ! the la$er do not; but in bolh cases the
general solution to the time-deperdent Schrodinger cquation is a linear combination
of sl ionary states lor the first iype this combination takes the form of r r"d
(over n). whereai for the second it is in iat€sldl (ovcl k). what is t]le physical
significancc of this distinction?

In cldrri..rl mechanics a oDe-dnnemioDal time independcnt potcnlial can give
ris€ Lo two ralher diffcrent kinds ol motion. If y(r) rises fiigher than the particle's
total energy (t) on eidEr side (Figure 2.12(a)), then the paticl€ is "stuck" in the
polentirl well it rocks back and forth berwe€n dre tnrning points, but it cannol
escape (uDless, of course. you provide it with a sourcc of extm enefgy, such as
a moro! but we're not talking about that). We call this a bound sfate- If, on ihe
other hand. E exceeds v(:r) on one sidc (or both), rhen ihe panicle comes in ftom
"infinity." slows do$n or speeds up under the influence of the potenfial, and retums
to infinity (Figule 2.12@)). (It can't get trapped in the polcntial unless there is some
mechanism. such a.s friction, to dtrr?d. cnergy, but again, we're l}ot talking about
6at.) We caf dis a scattering state. Some potcntials admil oDly bound states (tor
instance, the harmonic oscillator); some allow only scattering states (r poiential
hill with no dips in it, for example); some pffmit both kinds, depeoding on the
energy of Lhe p licle-

The two kinds oi solutions to the ffhitdinger equalion correspond prccisely to
bound and scatrering states. The distinction is cven cleaner in the quantum donain,

- becruse the phenomenon of tunneling (which we'Il come to shordy) allows the
particle to "leak" .kough any finile potenlial bader, so the only ihing that maiters
is lhe poLerr ial  ar in j in iry r f igure 2. l2rc) l :

J E < tv( co) and v(+c!)l + bound state,
I t > ty(-co) or y(+co)l + scattering state. [2.ro9l

rn 'real lift' most poientials go lJ zero at infinity, in wh;ch case the critedon
simplifi es even turther:

12 r0l

Becarse the infinite square well alrd haJmonic oscillator potenlials go to inlinity as
r + t oo, lhey admit bound states only: because thc ficc pa.ticle potcntid is z€ro

I t < 0 +  b o u n d  s t a l e ,

l E > 0 . +  s c a { c n n g  s h r e .

FI

E



grve
le's

the
from

l l 0 l

I
Sedio" 2.5: The Deha-Fsn.non Potentiol

(c) ,.

FIGURE 2.12: (a)A bomd stare. (b)Setre.ins states. 1c) A dl4$i4cl boud state,6ut
a qdet@ sotredng sfare.

everywhere, it orly alows scafiering states-34 In this section (and the fo owing
one) we shal explore potentials ftar give rise to both kinds of $ares.

){lf you m iritatinely obsers! yon @y have nonced tbat i\e geneEl th@Em rcqlniry
E > vnft €obid 2.2i do4 mr Ealy aptly 10 sca.redng sen€c sin@ lhey @ nor nomaliabre
anyway. f ihis both6 you try slving $e Schodingq eqdion witlt € = 0, lor ihe te FnieL. md
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FIGURE2.13: The Dnac delta tuncnon
(Bquation 2.111).

2.5.2 The Delta-Functior Well

The Dirac de.lta function is an infinitelv hish' intrnitesnnatlv llanow spike at rne

origin, \those a/"d is I €igure 2 13):

| ,  
* '* /*rt.rr '  

='. t2 .1 r1 l

Te.bnically. it lsn l a tuncdon al all sinc' it i\ nol fiorle at .I - 0 (mademalc'ans

#*1fi**t#l**l*h;::#riil#:##rn#
;;'" ;;il;;;;. Ir vou multiPrv E(r - a) bv at otdiw'r tunction f(')'

il s $e sdme as mullipllitrg bv /(d)

l'\s(, a): f(a\6(a - a,' 12 rr2l

because the product is z€- un1*uy{*""pt ut tlt" poinl d' In particutar'

/ *  
, , , , , ,  , ' r ,  -  1 , . , / *u t '  -  t t td ' \  f  ta t [2.r13]

^  {0 ,  i t ,  +o. ( -Y r= l  co ,  i f  r : 0

Thafs the most important property of the delta function: Under the integral sigr it

";;;; 
i;;iil;aiue or i6; at oe point a (or cowse' the intesar need

il;;H'f;; *-, ,tt tt*t *uner' i" ti'ut tr'" 'lomain of intesation include

the ;oht a. so a -€ to ?r+€ would do, for any € > 0')

l,eCs consider a potential of the form

"*"tt"t*i**"^t*n^ 
tt*"se $lutions smot be norMliz'd The posirive eErgv elutions

by tneoselves comri$ie a complete sL-' 
iim" aao run",ioo 

"- 
te rhought ol 6 tne li'lt of a r?4!drc' of imctions slch 5 recrangls

i.. oi"ne6 ;t 
""* 

i*.i"s heishr md evd_de'6i's sidrh

p.r14l

d
i
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where o rs some positive cootcanL 
16 This is an arbdcial potenhal' ro be sure (\o was

Lne .n"ir. .qt-. 
".ffl. 

tuL it's deLighfiruy simple lo work witb' 5od illumioales

'f'. Gt ,ft*.y witfi a minimun of anal)'rical cluttEr' Tbe Schrbdioger equauoD

for the delta-funclion wel reads

_. t- a6t1)'1! = El,l'l

it yields bolh bound slates {E - 0) and scaLkring slates (E > 0)'- ' 
we ll look 6rsr ar the boutrd gates. tn the rcgioD .| < 0 y('r) - 0' so

{4: ?t! s:*r,.

* = -  
h  

.

t2.1151

[2.116]

12.rr11

B.rr9l

Q.r2rl

(E is rcgative, by assumption' so r' is real ad positive ) The genenl solueon to

Equation 2.116 is
t6r:  Ae t '  + Be" ' ,  [2 118]

but the fiIst telm blows up as t -+ -co, so we must choose A : 0:

l '@t: Bet' .  (r <0)-

In ihe &gion t > 0, y(t) is again zero, and the gen€ral solutior is of the form'i 

"irtr; 
* o*on^; tnis ti-e ir" o" 

"e"ooa 
term thar blows up (as r +

+oo)' so 
v@): Fe k" (x > o). a:l:]o1

Il remains ool] ro stirch tbese iwo firoctions logether' using the appropnate

**li,irff"ir""-',1 
"i 

.-: o- q'."a *ai- the s-tandard uouodarv conditions
ror tlr:

p.rnl

l6The dela tuncnotr its.lf di€s unds of UP28* iee BqMdon 2 111)' !o c hs th€ tti@nsio6

. , .  [  8 " " ,  t r 5o ) ,
r t x ,=  I  Be - . r .  ( j (>0 ) ;

In this case the fust bomdary cof,dition fells us that F : B' so
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FIGURI 2.14: Boud state wave frmction for the detta-tuncriotr potential lEqua-
tlon2-122).

ry'(r) is plotted in Figure 2.14. The secod boundary condition re|s us norhiq;
ttlls is 0ike the hfnite squa.re well) the excepiioMt case where y i! infinite ar the
Joln. and it's clear from the graph that rhis furction has a kirt ar, : 0. Moreover,
up to this poitrt ahe d€lta function has not come into the story at a . Evidenrly the
delta function must determine the dj-scontinuity in rhe derivative of /. at .r : 0.
I'll show you now how this works, and as a by-produd we,[ s€e why ltldr is
ordinarily continuous-

TI€' ide is to inteqnk the Sctuitdinger equanon, ftom -€ to +€, and rlren
take the limit as € + 0:

:: I' :,',,,, !-' ,,,,,l",ar - u I' ,|,(t)dx. l2.t23l

The first irtegal is notiit'bltt d1b/dx. evalr^eA at rhe rwo end poinrs; the lasr
irtegral is z"/r, in the limir € + 0, sinc€ it,s rhe area of a stiver with vanishing
width and finire height. Th

/
. ld , t , \  dv l  a , t ,  |  2m.  |  .

" \ a' i 
= a. l-. 

- 
u-=l --; ,,t !^"1-, v(\\'/'k\dr' tz t)41

Typicaly, the Iimit on tl|e rgnt t agaln zero, ana *rafs why d?y'/dj is ordinarily
continuous. But when y(r) is inrtnite at the boundary, this argumenr faits. In
palticular, if y(x) : -ar(,r), Equation 2,113 yields

/ dtb \ ) 'r^t  .  t :  _  . , r ' (0) .
\ d r  /

For the case at had @quar1on2.l22:),

I d1/'/d' : -BEe-", for (x > o\, so dl'/dxl+: -BK,

I  a,p1ax=a3*"+",  for(x <o),  so d1l, /dr\  :+BK.

and hen,cE ^(d1t!/.tx) = -28r. And 1y'(0): B. So Equation 2.125 says

"  h 2 ' ,

12.r2sl

12..1261
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and the alowed energ] (F4uation 2.117) is

E: , ! t=
2m

Finally, we mrnalize ,y':

t  @  ^  ^  / @  t D t 2

/_ tvr , tPa, -  taP J,  ; ' '  a, :1= r .

so (choosing, for convenierce, the positive real root):

^ - ,riid
D : \ / K = -

Evid€ndy fte

tG\:9;^aan",5: zhz '

0.
is

della-flrncrion weLL reg"rdles of it-s strenglh d. har a.4. y on"

p.lnl

12.1281

121291

12.1301

wlat about rcdnering states, wi$ E > 0? For r < 0 dle Sckijding€r equation

-: - , t t :  _k".tr,

h

is rcal and positive- The genelal solution is

l,o) = Aetu + Be ik ,

and fhis time we cannot rule out either ter4 sr@
Similarly, fori >0,

tb@): Fetu + Ge-h _

The continsity of t(-r) at r :0 .eq|rircs tbat

12.13rl

rcither of,them blows up.

12.r32)

I d,b/dx: ik (Fetu

I dltJldl = ik (Adk'

F + G: A+ B. [2-133]

G"-itJ), for (, > 0), so d.,!'/dtl!: ik(F Gt.
- Be ik'), fot (tt <o), so dtldrl :ik(A- B\,
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and t:trjrlce ̂ (d1L / dr, - i&(F - 6 - A + B). Meanwhile' f (0) = (A + B)' so the

second boundary condition (Fquation 2.125) says

ik(F G - A+ B\:  " f f ro* " t .
t2.r34l

12.1361

12.r371

or, more compactly,

F  - C  -  A r t  |  2 i l i t -  B t t  z t | \ .  w h e t e  n = r y k  1 2 l l 5 l

Having imposed bo$ boundary condiiiom, we are Ieft with two equatrons

reouations i. t:3 and 2.135) in foul unknowns (A, B, F, and G)-tvd, if vou
co nt l. Normalization won't help-this isn't a nornalizable state Pe*aps we'd

beiter pause, theA anal examine the physical significance of th€se variotls con-

stants. Recalt that eip(tkt) gives rise (whetr coupled with the timedependent

factor exp(-tEtlr)) to a wave tunction propasating to the rtsnt, alrd exP(-tLr)

leads to a wave propagating to the lelr. It folows dlat A (in E4uatior 2 131) is the

amplitude of a wave coming in ftom the left, B is the amplitude of a wave rctum-

inito 1trc left, F (Equation 2.132) is the amplitude of a wave travelins off to the

Ii;tu and G is tbe a$ptitude of a wave coming in ftom fie right (see Figue 2 15)'

In a ttTical scattering experiment particles ar€ tued in from one direction-le1's

say, trom *re tett ln drat case ihe amplituile of the wave coming in from ihe n?fu

G = 0, (for scattering ftom rhe left);

A is the amplibrde of tlle itrcidetrt flsve, B is the amplitude of the reflec&d wave'

and F is th€ amplitude of the traDsmitt€d wave. Solving Equations 2'133 and

2.135 for B and F. we find /

i A  1
B = 

; tpA.  
'  - -  

r , ,po

0J you wart to snrily scattering ftom ahe ttgit, set .4 : 0; then G is the incident

amDlitude F is the reflected amplitude, and B is the tmnsmitted amplitude )

FIGURE 2.15: S@ttdins Gon a deka turc-
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Now, the probability of findirg the particle at a specified location is given bv

J{ 2, so the relatire3T probability ihat an incident panicle will be reflected back is

I B 2  8 2R= 
t * : ;oz

[2.138]

R is caled the refledior coefficient. (If vou have a ,e'r" of particles' it tetts

you d1e /z.tifl of ille incoming nunbef that will bounce back') Meanwhile' dle

probability of tmnsmission is given by the traDsmission coefncient

Oi course, the r! of ftesc probabilities shoutd be I and il tr:

R+? : l [2.140]

Notice that R
of  t :

and Z are functions of B, and hence (Equatjons 2.130 and 2135)

1
" r  + (2hzElmd\ '

I
' 

| + (noP /2h2 E)

'  :  
1A l , t+ f2

12.1391

t2.1411

The higher the energy. the greater the probabilitv of tnnsrnission (which cenainly

This is all very tidy. but there is a sticky matler of Pdnciple thar we caruot

altogether ignore: 'Ihese scattering wave functions are not normalizable' so they

aont actuatiy repr.sent possible panicle states But we know what the resoludon to

this problcm is: We must form nomalizable [near combinations of the stationarv

states, just as we did for ihe free particle-true physical partcles arc reTresenied

by the resulting wave packets. Though siraightforward in pdnciple, this is a messy

busircss in practice, and at this point it is best to tum the problem over to a

computer.3s Meanwhile, since it is impossible to ffeate a normalizable ftee-p'nicle

wave function without involving a ranS€ of energies, R atrd f should be interpreted

as the appra'imate reflection ,nd tnnsmission probabilities fdl Particles in the

vicinitt of E.
I;cidentally. n night strike you as peculinr that we were able to analvze a

quintessertially time dependeni problem (particle comes in, scatlers off a potential'

')lhb 
' noL . nornf ilble vAve fdn,tion 'o d d,rd'dr' p'obaiilirv ol [ndnq LhP pslle

"L 
^ odicu.Jr lo.dtiun 0or seh d.med ne\edele* J' ,ant oI Pobdfil:rje lor Ln rn ldcrr dr

on;ed wrvcs ir mani.stul More on tnis i lhe nexr psa8ralh'

rsNmen al studis of wave pactets scerins ofr wclls and bmiers FvaL erhordilailv nch

,-"tu-. ir." 
"Gi" 

-ay'i' is atoldbelg, H !'I. schet, and J L schwaitz An I P/4r 3s' 1?7

rr96?J: moc raent woli can be lound o. the Web
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ftcLJRE 2.16: The delta fucriotr banier'

and flies off to infinity) usin| eatiowrt states. After all, t (in EquatioN 2.131
and 2.i32) is simply a complex, the-independenl. sinusoidal tunction, extending
(with constant amplilude) to infinity in both directiolrs. And yet, by imposing
appropriate boundary conditions on this fuDclion we were able to determine the
probability that a panicle Gepresented by a lo.alized wave packet) would bounce
off, o. pass tlrcugh. the potenlial. The lnathelnatic: miracle behind lhis is, I
suppose. tbc tact tiat by takiDg linear combinations of states spread over ali space,
and with essentiaUy trivial ftrc dependence, we can .otrtru./ wavc tunctions that
are concentrated aboul a (moving) point, with quile elaboraG behavior in lime (see

Problem 2.43).
As tong as we've got the rclcvanl equations on the lable. lefs look bdefly at

ihe case of a delta function baffb (FiE\\e 2.16). Fonnaly. all we have to do rs
change the sign of d. This kills the bound state, of coulse (Probiem 2-2). On th€
other hrnd, the reflection and trrnsnission coefficients. which depend only on dr,
are unchanged. St ange to say, the panicle is just as likeiy Io pass tbrough the barrier
as to cross over the welll Cld$tcalb. of coulse, a particle canlot make it over an
infinitely high barrier. regardless of its eneryy. In fact, classical scatlering problems
arc prerty dull: lfE > ynd. then ? = l andR:0 the panicte certainly
ma&es it ov€r; if E < v-a' then ry= 0 and R : l-it rides up.he hill undl
it runs out of steam. and ther returns the same way ir c2Jne. Quantun scatte ng

Ploblems are much richer: The pafiicle has some nonzero probability of passiDg
through the potential even if E < y'-*. We calt this phenomenon tunneling it is
the mechanisrn th:t nakes possible much of nodem electrotics noi to mention
spectacular advanc€s in microscopy. Conversely, even if t > ym, there is a
possibility thai the particle witl bounce back-thougl I wouldn't advise driving
off a cliff in the hope that quanlum mechanics wilt save you (se€ Problem 2.35).

*Problem 2.23 Evaluate ihe lb owing integrals:

{a) /ljr(x3 3-r':+ 2.r - 1)s(r + 2) d-r,

(b) Jf tcos(3i) + 216(.1 1r ) d.t.

(c) Jli "'p( "t + 3)t(.r 2.) d-r.

r
I

I
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Problem 2.24 Della functions live under integral signs, and two expressions (Dr (r)
and Dr(i)) involving delta functions are said to be equal if

/_

for every (ordinary) turction /(i).

ia) Show thai

st'1o,19 o' = 
l* 

yo)D2e)dr.

rcr: :6( ' ) .

'r"i={l iiii3

12.1411

where . is a rerl conslrni. (Be surc to ch€ck th€ clsc where c is negalive.)

(b) Lel P(i) be lhe step funcaion:

t2_r431

(In ine rare case where it actually mafters, we deline d(0) to be U2.) Show

x *Problem 2.25 Check the uncertainty principle for the wave tunction itr
Fquarron 2.129. Hint: Calculating ip2) is tsicky, because the derivative of f has
a st€p discontinuity at i = 0. Use lhe result in Problem 2-Z(b). Patbl amer:
lp2i : (ma/h)2.

*Problem 2.26 What is the Fourier rransform of 6(a)? Using Plalcherel's drcorela

t r ' r : . |  I  . i b , t k 12_1441

Ca-ru"r This formula gives any respectable malhematician apoplexy. Although
the int€ral is clea.rly jnfinitc whcn r : 0, it doesn't converge (to zem or any-
thing else) when ir + 0, since tfie integrand oscillates forever. There are ways
to patch it up (for instarce, you can integrate from -I to +4. and intelpret
Equaiion 2.144 to mean.he average valne of the finite iDtegral, as t + oo)-
The source of tlre problem is that the delta tunction doesn't me€t the requircment
(square-integrability) for Plancherel's ttleorem (see foobore 33). ln spite of this,
Eouation 2.144 can be exaemelv usetul. if handled with care.

*Prcblem 2.27 Consider the do,rl" delta-furction potential

V(r) : -dt8(.r +d) + d(r - a)1,

where d and d are positive constants.
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(a) Ske@h fiis poleDtial.

(b) Ho" matry bouod slales does il possess? Fud tbe allowed energie!. fo' o -

h" lna 
"nd 

for a - hz /4na, aDd slercb r-he wave frlncrioos.

I o 1

wh

AI
OU
sd

* *Itoblen 2.28 Find the trarsmbsion coefncient for the Doteftial in Prcblem 2-n.

2.6 THE FINTTE SQUARE WNLL

As a last example, cotrsider 6elrutd square we potenlial

uro : { ou"' ?J,,,,",'"1' "
fn
i s l

t2.1451

wherc yo is a (positive) consraft (Figure 2.17). Like the delta-turctior wel, this
potential admits borh bound states (with E < 0) atrd scaneritrg srates (with E > 0).
lve'[ look flst at the boutrd states-

In ihe region r < -d th€ potential is zero, so dle Scbrddinger equation r€ads tu

IL
sitr
d

sol

is rcal ard positive. The seneral solution is t(r) : A exp(-rr) + A exp(,rr), but
die tust term blows up (as r + -oo)t so the physicafly admissible solution (as
before-se€ Eauation 2.119) is

l ' ( x )=Be* ,  ro rx<  a .

12.t46l

12.r47l

well

Th

Di

FIGIJRE 2.12 The 6rite squd€
(Equarion 2.145).
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In the region -d < r < a, V(r) : y0, and 1bc Sctuodinger equalion reads

2.11.

l-l5l

Ors

(as

471

- hllr = Et" ol

Jtt rElr6;

t2- 1501

The next step is to impose bourdary condinons: ]y' and d1y'ldr conrinuous at
l? and +a- But we can save a little rime by noling that rhis potenrial is an even

function. so we carl assume wirh no loss of gercrality that the solutions are either
ever or odd (Pmblern 2.1(c)). The advanLage of rhis rs tha. we nced only impose
thc boundary conditions on one side (say. at +a); the orher sidc is rhen automaric,
since ry'( r) = 1y'l(r). l'11 work out the even solulions; you get ro do the odd
ones in Problem 2.29. The cosinc is even (and ihe sine is odd), so I'm lookins for
solutions of ihe form

Altlrough E| is negativc, for bound srares. it must be grealcr than yo, by the
old theorem '' > ynn (Problen 2.2); so I is also real ard positive. The generat
solution is3e

r/(r) : csin(lr) + Dcos(lr), f o t  - a < x < a ,  t 2 . 1 4 9 1

[ 2 . ] 481

where C and , are arbitrary constanrs. Finally. in the region r > 11 tlle porential
ts asarn zero; the general solution is ry'(.r): rexp( rr) + cexp(r:r), bur rhe
second tenn blows up (as .r + €), so we are lefi wirh

!,(r') : Fe xr. fot r > d.

I  F " " .  f o r x > . t .
V / ( r ) :  I  , c o s ( l j ) ,  t o r o < x < a ,

I  / (-- I ) ,  forr  < 0.

The coniinuity of ry'(ri, at x : a, says

Fe-'" : D cos(la)'

and rhe conlinuity of /t/lr, says

KFe .": tD si'],(ta).

DividiDg Equatior 2.i53 by Equation 2.i52, we find thar

[2.151]

[2.rs2]

t2.1s3)

12.rs4l

rvYou an. irtou like, Friic the gendr:l solutioD'in dponential f.m (C'.tr + D/,_tu1. This
leads to dre sdnc f.al Esul! but since thc pormid is sytrntlric wc kDw ibe s.lulions eilL be eirhcl
cvcn or.dd, dd the sine/cosin€ o.hrion aloss us to expbn |nis diEctly.
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YGJA=

Q.rssl

According to Equations 2.146 ard2.r4a, Q.2+ tz): z^vop2.s" *": ffi *.
and Equation 2.154 reads

t2.rs61

FIGURE 2.18: Graphi@l solutior to Equatioe2.156, tot zo = I l@fl stat s).

This is a fomula for the a owed eneryies, since r and I aft both fimcrions
of t. To solve for E. we first adoDt some dcer rotation: I-et

z = la, ard ,o = 
i.,[-nno.

This is a transceDdental equation for r (and hence for t) as a tunction of z0
(which is a measure of the "size" of drc we[). L can be solved numerically, using
a computer, o( graphically, by plotting tanz ard /(.0/z)2 - 1 or the same gi4
,nd looktrg for points of intersectiotrlsee Figure 2.18). Two limiting cases are of
sp€cial interest

1. Wid€' deep well. If zo is very larye. fte inteffections occur just slighdy
belovt zn : m /2, with n od4 it fouows fiat

E^+Vo= Q.1s7I2m(2a)2'

But ' + yo is lbe energy abow the botton oJ the well, afld on the right side
we have Fecisely the infinite square well energies, {or a well of width 2.r (see
Equation 2.27)-or nihe{, nuf of theD" sinc€ this n is odd. (The other orcs, of
coun€, come Aom the dd wave furctions, as you' discover h Problem 2.29.) So
the fiifte square well goes over to the infnite square we]l as y0 --r co; however,
fq any rtn e y0 there are only a finiie numbe{ of bound staies.

2- Shallo% narrow well. As z0 decleases, there are fewer atrd fewer bound
stares, until finally (for z0 < n /2, wherc iE lowest odd state disappean) oi y one
remains- It is intercsting io note, howFver, thar there is always ou bound staie, no
malter,/Dr, '\xeak" lhe well becomes.
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Yo!'rc welcome to tromralize ry' (Equation 2151), if you're illterested
(Problem 2.3o), but l'm going to move o|l trow to the scatted-trg states (E > 0).
To the le& where Y(r) = 0, we have

1!( ' \ :  Aetu + Re 6, for( i<-a),

'/TA@T'o)

t2.r 581

t2.rs91

t2.r@l

12.1611

Q.1631

Q.r@.l

12.1651

where (as usual)

Inside the well, wherc Y(r) : Yo,

lt(x) : c sin(t'\ + D cos(tx), tot ( a < x < a)'

To the dght, assuming there is no incoming wave itr this regioq we have

'l

o

'f

v

I

fr

d

Q.162l

Here A is the incident amplinrde, I is the rcflected amplitude, atrd F is the tans
mitted amplitude.4

Thele are four boundrry conditions: Continuity of /(t) at -/ savs

Ae ik" + Betu : -C sin(la) + D c.rs(la),

continuiry of d1y'ld, at a sives

iktAe-i tu ,  Betul :  ILC cos(la) + Dsin(14)l

conlinuity of ly'(r) at +a yields

c sin(la) + , cos(,4) : Fe@ ,

and co inuity of d//dr at +d requires

Ilc c/Js(ta) - Dsin(Ian: ikFettu. Q.166l

avr'e .,uA 1mt fd even ,rd odd n[ctions. 4 we did in the @ of brod sla&s. bul Ihe
scate{ing pobhm is inhdeddy sytmetic, sin e dE s*s 6ne i! ftogl om side o t and he
erponatial nobdor (repHeding haveting savB) is morc etual id fiis onteiL
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FIGIJRE 2.19: Transmissior coe{ficiot as a tunction of enersv {Equatiotr 2'169)'

We can use lwo of these to eliminate C and ,. and solve the remaining two for

B and F (see Problem 2-32)i

B = i"YiioJ (t' e\F, 12.16'71

{2.r681
cos(zld - i@# shQto\

The transmission coefncie (T : tFl2 /lAl2). expressed h terrns of the orig'

iml variables. is given by

t2.1691

N o t i c e t h a t Z : l ( t h e
which is to say, when

12.r701

where n is any inieger. The ercrgies for pefect transmission' then, are given by

n212h2
En+uo:2nr2ap '

which happen to be precisely the allowed energies tor tIrc infnite square well I

,s plotred in Flgure ).1o. ds a functioo ol energ)."|

*Probl€m 2.29 Analyzg IE odd bound state wave funclions for the firite square

we[. Derive the fanscendental equaiion for the allowed energies' and solve it

graphicaUy. Examine the two limiting cases- Is there always ar odd bound state?

aLThis rmtable phdorenon hd bed o6sd€d h lhe la,lDflrory, h the forn of the Ramm''

Tomeul €d€.f Fo! d irinnin.ting discnssion se tuchrd w. R,.[lnell Quantn M'chtni6 Orjotd

u.P. t997. S*rion 124.r-

well becomes "transparent") whenever the she rs zero,

12.I1tl

;JIn\8. 
+ vo\ : nn,
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12.161l

[2.168]

|e ofig

I2.169j

[2.170]

[ 2 . 1 7 1 ]

$.11. I

solve i!
I sute?

Problen 2.30 Norrnalize t(x) in Equation 2 151, to determine the constants D

and F.

*Problem 2.34 Consider the "step" potenlial:

Problcm 2.12 Derive bquations 2 167 and2168 Hint: Use Equations 2.165 and

2.166 to solve for C and D in terms of F:

r  t  I  [ .out , ,  ;1 ' ' " , l , r lo ' r .( - . l . in , / , '  f , ; .o . , /d , lc ' " / :  D-  
L  ,  I

Plug these back into Equations 2.163 and 2 1& Obtain the tnnsmission coeficicnt'

md confinn Equation 2 169.

* *Probtem 2.33 Detcrmine the tftnsmission coeflicient for a reclangular bdrlter

Gat". ," rq""tion z-r+s. onlv with v(t) : +vo > 0 in dle region -a < x < d)'

i."" *p."ay the three cases E < vo' E = Vo, and E > vo (note that lhe

wave tunction insiae thc banier is different in the three cases)' Partldl anrw€'i For

E . V6a

,  v ^ ' z  . . , t 2u7 ' : l +  '  s rnn - t  -- 4E(Ur E) \ / i

Se.tion 2.6: The Fiflite Sq'dle WeLI

[ 0 ,  i t r : 0 ,n(" - lvo  i t ,  .o

Calcuiaie thc reflection coemcien!, for the case t < y0' itnd comment on

Calculate the reflection coef6cient for the case E > v0'

For a potential such as this, which does not go back to zero to the right of

ihe b;er. the transmission co€fficieirt is ndt simplv lFl'zllA]'z(with A dle

42This is a good erdptc oi urnrclilrg .lafltzl0 dr€ Fnicle would bounce back

83

Problen 2.3 1 The Dirac delta function can be thought of as tbc hniting case of a

rectdngle of dea 1, as the height goes to inlinitv and thc width goes to zero Show

ttlat rl-e dclta-funclion well (Eq ation 2-114) is a "we'k' potential (even $ough it

is itrfinitely deep), in the sense that .o + 0- Deternine the bound state enc(gy br

G. a.ft, i"*,io. p"t*ti^f. by treating it as the timit of a linite square wef Check

ir'",1... -.*- li -*l.teniwith Equation 2 l29 Also show rhat Equalion 2 169

redrces to Equation 2.141 in the appropriate limit

l2m(.vo - E) 
)

{a)

(b)

k)
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FIGURE 2.20: S@tte.hs fion. 'cliff' (Problem 2.35).

incident amplitude and F the transmiced amplitude), because the ransmir.ed
wave tmvels at a difiercnt rpeed- Show that

12.r72l

fot ,g > y0. Itnij You can figure it out usiDg Equatior 2.98, or Inore ele-
gantly, but less informatively ftom the plobability cunent (Problem 2.19).
What is ?, for t < Y0?

(d) Fo{ t > yo, calculare the tmnsmissior coefficient for the step pote ial. and
c h e c k d r a t ? + R : 1 .

Problem 2.35 A particle of mass D a l kinetic ercrly E > 0 approaches an
abmpt potential drop /o €igue 2.20).

(a) W]'at is the probability that it wiltr'leflect" back, if E : Vo/32 Hint: 'ftus

isjusl like Problem 2.34, except that ihe step now goes dolrr, instead ofup.

- ib) I drcw the figure so al to mate,you think of a car approaching a cliff, but
obviously the probabiliry of "bouncing back" ftom the edge of a cliff is /dr.
smatler than what you got in (a) unless you're Bugs Buniy_ E{ptatu why
this potential does zor con€cdy represed a cliff. l1,rr; In Figurc 2.20 rhe
potertial energy of th€ car &ops discontinuoasLJ to - y0, as ir passes r : 0;
woutd this be true for a falling car?

lc) Wlen a free rcutror eniers a nucleus, it experiences a sudden drop in poten-
lial energy, from y = 0 outside to around -12 MeV (milior electron volts)
inside. Suppose a neutron, emitted with ldnetic energy 4 MeV by a fission
eve , saikes such a Ncleus. What is the probability ir wilt be absorbed,
thereby initiatitrg anorier fission? Itinf You calculated the prcbabiliry of
refectitn in part (art \se I : 1 - R to Cet the probabiliry of tra$mission
throush the surface.

IF12
IAP'

'**
V
I
I
i
I
i zuRTTfi,R PROBL

p."t
ate I

ftorn
tetro
that

prot

*Prot
(F.qu
wall
The

(a)

{b)
(c)

Prol

(a)

o)

tc,

Det€
expe
appli
atrd r



Fafthd Prcblms for Chaptet 2 85

FURTHER PROBLEMS FOR CHAPTER 2

Prcblem 2.36 Solv€ the dme hdepend€nt Scbrddinger equation with appmpri
ate boundary conditions for the.tentered" infinite square wel: y(_r) =-0 ifor-d < r < +a), 7(r) : in (otheffise.). Check thar your a owed energies lle
consistent wi(h mine (Equation 2.27), and confiIln that your ly''s can be ;btained
from mine (Equarion 2.28) by the substitution x > (x + a\/2 (ad appropriate
reDormalization). Sketch your first tbree solurions, and comprre Figure t.2. Nore
that the width of the we isnow2r.

l72l

r9).

but
tar
'hv
lhe
, 0 :

tsl

of

Problen 2.37 A particle in rhe infinite square wel (Equatior 2.19) has rhe inirial

v ( r . 0 )  : A s i n i ( z r l d )  ( 0 : r  s d ) .

Determine A. fnd V(r, r), and calculale (j), as a funcrion of rime. What is the
expectation value ofthe energy?.?;rr: sir,, and cos'g can be reduced, by repeated
application of the trigonometric sum formutas, ro tinear conbinations of s;(nr)
and cos(m0), with n :  0,  t ,  2,  . . . ,  t t .

,FProblem 2.38 A particle ofmass n is in the ground srate of the iniinire square well
(Equation 2.19). SuddeDly rhe wel expands to twice irs original size_rlle right
wall moving Fom a to 2d-leaving the wave irnclion (nomenra.rity) undisturbed.
The eneryy of tle particle is now measured.

{a) What is ihe mosr probable result? Wtat is rhe probabitiry of gettirg thar

(b) Wlat is dre zarr most probable resul! and whar is irs probability?

{c) W}at is the erpectunon value of the energy? Hint: ff you find yourself
conlionred wiih an infinire s€ries, rry another method.

Problern 2.39

(a) Show that the wave tunclion ol a parricte in the infinite square w€ll retums
fo its original folm after a quantum revival time T : 4ma2lnh. Tl\at is,
v(r, 7) = v(r, 0) for any state (ror jusr a stationary stare).

(b) What is tie clarsral revivat rime, for a padicle of energy , bouncing back
and forth between the wa s?

1c) For whar ener$/ are the two revival times equal?43

lJTnc fact 6at the.l6sial ed qumtun rcvival tin€s bed no obviou Elatior to one dothcr
(&d the qwrm onc doesn't eu depend on dE erclAi) is a @.ious paradoE se Dmiel SrJ,er,
Ah J. Phrs. 69. 56l2ftJli.

up.
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Problem 2,40 A particle of mass m is in the potential

I  oo (r  .0),
v lx) -  |  32h'zlna'L (o -_r -a),

[  0  ( r > a ) .

(a) How many boutrd states are there?

{b) h the highest€nerey baud stare, what is the probability that lhe particle
would be found ortrt.re the $e\ (x > a)! Attswer: 0.542, so even though it
is "boun(r by $le we[, it is more likely to b€ found outside than inside!

Problem 2.41 A padicle of nass t'' in the harmonic oscilator potedial
(Equaiion 2-43) srafis out ir the state

/ ti; z
* r r .o r=A l t  2 ,1^ : r \  e  Y . . .

\  va. . /
for some constant A.

(a) wlHt is fte epedarioD value of the erergy?

(b) Al some later time f the wave furction is

for some constant B- wlat is the smalest possible value of ??

tuoblem2.42 Fitrd the allowed energies of the tuf harmodc oscillator

, , , . , _ l  r 1 .12 tm.2 . ,2 ,  ro r  ' >o .
" " - l oo .  r o r r . 0 .

Clhis represefts, for example, a spring that can be stretche4 but not conpre.ssed.)
Itiar: This requnes some careful thooght, but very litde ac!.ul computation.

* *Problem 2.43 ln Prcblem 222 yoti atuIyzed tlrf' stationary EztJssian fre€ particle
wave packel Nol' solve the sam€ pIoblem for the tzv"ltaa gatissian wave packet,
starting wiih the initial wave tunction

v(x'O\:  Ae uz ei t '  '

where I is a rcal comtant.



Licle

Ai r
!

trcle

Futther Prcblens fot ChnPftt 2

x xProblem 2.44 Solve thc time independent Sckodinger equation fbr a ceDtered

infinite square well with a delta-fuDction baraier in the middle:

v , , ,  l l l , , ' \ l  l " ' - '  
'  r d

"  l N  l o r  l '  - : d

Treat lhe ever aud odd wave functions separately. Don't bother to normalize thcm

Find the allowed encrgies {graphicaly, if necessary)- How do thev compare wrtll

thc cor€sponding energies in lhe abscnce of the delta functionl Explain why the

oalil solutions are nol affected by the delta function Comment on the liniting cases

. r + 0 a n d d + c o .

Problem 2.45 r two (or rnore) distinctaa solulions io lhe (time independenl)

Schritdinger equation have the same energy t, these states are said to be deg€n-

erate For e\ample. Ihe nee parlicle clales rre doubl) degencrale -onc 'olution

representing motion io the nght, and thc other motion to the left- But we hxve never

enco.ilntercd nornalizable degenerate solutions, and this is no accidenl Prove the

following theorem: l,r fle dinensiona5 there are no degenerate bound states Hint:

Suppose there are,tt solulions. ry'r and 1y'2, with the sane energv E Multiplv the

Scbrodinger equarbn for tl by rr2, and thc Sclrajdinger equation for 1y'2 bv t/r,
anil subtract. to show that (1lt2d1h/d' - lJi!J2/dr) is a constant' Use fie fact

that fo! normalizable solutions t + 0 rt t,ro 10 demonslrate ahal this constant rs

in fact zero. Conclude that f2 is a inultiple of tl and hence that the two solutions

Problem 2.46 Imagine a beaal ol nuss m that slides frictionlesslv arcund a ci'cular

wirc ring of circurference I,. (This is just like a free panicle, excepl that iy'(r +

l) :1y'(x).) Find the slationary states (with appmpriate normalization) and the

conesponding rllowed encrgies- Nolc that ihere are bto independent solulions for

each erergy E,-conesponding to clockwise and counter clockwise circulation;

call them t+(r) and,y';(r). How do you account for this degeneracv, in view oI

thc theorem i. Problen 2.45 (why does the theorem fail' in ihis case)?

* *Problenr 2.,17 Attention: Tlns is a stictr\ qu.llitatire problem-ro calculations

allowedl Consider the "double square well" potential Gigue 2.21) Suppose the

alf tlvo soiutions ditrd only by a multiplicanve onsrnnt Go lhat, once nonalizeq dre] diffel

on l r  ' l  x  p l de  ' 1  r " o ' .  r be )  EPr ' . o r  r he  . rmc  p l  n : l { L r c  do  ' n  r ' -  ' e t u_  r l " J  de  ro  d  ' t i 1 c

,o t : .  ; n .  t e . , n . .  J r t . b l  - , l r u r . ,  tme .n  t ' n cd l v  i J r | .  ' d . o r .

4iln higt€r dime.sions such d€Cenoracv is ve.v comon d we shall s@ in Chapter 4 Asstrnc

. h " . l h e D , . . r k l d "  r o ' o a : r "  r o d r c d n r e e  . p m  e /  b t  F - i o 0  s l P ' v -  €  M o r ^ d c !

i n f i n r .  . , t L "  r  t r eU . .  b r , r ' r dn r  { o r ' d  g i . e .  F  r o  d  eened 'e  bo Ind  L re '  I o  $ } ; h  f r  p r '  ' r  '

eitlrer in $e one or i. ibc olher
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FIGURE 2.21: The double sq@re wel lProblfl 2.47).

depth y0 and the width a are 6xe4 arld large enough so that several bound states

(ai Sketch ahe grcunal state wave functior 1y'r arld the fust exciaed state f2'
(i) for dle c.ase , :0, (ii) for , ^, a, and (ni) for b >> d.

(b) Qualitatively, how do the coEespondiry energies (,E1 and E2) vary. as b go€s

lrom 0 to oo? Sketch Er(r) and E2(r) on lhe same gaph.

(c) The double weu h a very pdmitive one-dimensiotral model for the potential

experienced by an elecaon in a diatomic mol€cule (lh€ two wells reFesent
the atFactive force of the nuclei). If the nuclei are free io move' they will
adopt the configuralion of midmum energy. In view of your corclusions in
(b), does the elechon rend to diaw the nuclei together, or push them apart?
(Of course, there is also 6e htemuclear r€pulsion to cotrsider, but that's a

separate Foblem.) /

Problem 2.48 In Problem 2.7(d) you got the expectatiotr value of the energy bv

summing the series in Equation 2./9, but I wamed you (in footnote 15) not ro try it
tlle "old fasbion€d way," \H) : I 

"r(r,O)* 
H\' G,0) di, because the discontiru-

ous first derivative of V(t, 0) rcde$ lhe s€cond derivative problematic Actualy'
you coud h^!e done it usiry integratiot by parts, but rhe Dilac delta funcdon
affords a much cleaner way to handle such momalies.

(a) Crlculate the tust denvative of V(x,o) (h Problem 2.7), and express lhe
answer in tems of the step turction, ,(i d/2), defirEd iD F4uation 2.143.
(Don't worry about the end poirts-just the interior region O < i < a.)

{b) Exploii t}le result of Problem 2.24(b) to wdte the second derivative of v (r, 0)
in tems of the della tunction.

(c) Evaluate the integral / v(r,0f Hv(.',o) &, and check that vou get the
same answer as before.

++ l
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* * +Problem 2.49

ia) Show thal

r  m a \ t l o  f  n a  r  ,  
,  

o 2  
, 1  ,  

"  
2 , o , ,  i h t  

2 a r p .  , . , \ 1v ( t . r r= \n r , ,  " ' o l - r l  \ ,  2  m t )

satisfies the time d"perdent Sctuitdiryer equation for ihe harnonic oscillator
potential @quation 2.43). Here r is any renl constant with the dimensions of
length.a6

(b) Find lv(r, 41'?, and descdbe the motion of the wave packet

ic) Compute (r) ,nd ("), and check that EhreDfest's $el)ren (Equation 1.38) is
satisfied.

* *Problem 2.50 Consider the 'ottng delta-tunction we :

v(x, t \ :  -a '(x -  ut) ,

where ' is the (coNtant) vetocity of dle well.

(a) Show tlat the tnne-dependeft Schrodinger equation admits the exact solution

t^
, t ' , , . , ,  5  -  J ! ! "  n a  ) ' r  t a  ? '  i '  t  1  n  1  2 t u r ' 1  r - a t  t l t h .

n

wherc E : na2 /21t2 is the bound-stare energy of the stationary deltz
tunction. Itittr Plug it in and ..ircct it! Use the res'- t of Problem 2-240).

(b) Find the expectation value of the Hamiltonian in this state, and commenl on
the result.

+ * *Problem 2.51 Consider the potential

L 2  ̂ 2

Y ( r ) =  " ' s e ( h 2 ( a r '

where a is a positive constant, and "s€ch" stands for the hrperbdlic secant-

ia) Graph this potential.

{b) Check that ftis potertial has the ground state

fo(r) = A sech(ar),

and 6nd its ene€y. Nomalize 1y'0. and skekh its graph.

6This @ exanple of d exact ctos€d-fom solution to th€ timedependmr schrbdings eguarion
*a di$overcd by Sctuintingd hinell in 1926. 

-
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{c) Show thar lbe frucrioD

. . /il - d raoh(d.r)\ J.t i ( r ) - A l  . .  t "  ,
\  r ( t a  /

(wlterc k = J2nE/h, as usual) solves the Schritdinger equation for any
(positive) energy t. Since tanhz + -1 as z + co,

lrkG)x AeIE, for large n€gative 'I.

This represents, then, a wave coming in fton fie left vit\ w accompanJ-
ing renactud waw (i.e., no term exp(-il.r)). Wlat is the as).rnptotic form
of l,kk) at la$e positue r? What are R and ?, for this potential? Carn-
nent' This is a famous example of a r€flectiodless potential-every incid€nt
particle, regardless of itr energy, passes dght tl'rough.a?

Problem 2.52 The scattering matrill The theory of scatteriry generalizes in
a Fetty obvious way to arbits"ary localiz€d potentials (Figue 2.22)- To the left
(Regiotr D, Yft) : 0, so

"l'@): Aeb + Be-h, 'xb]f"te k=

To the right G.egion Itr), y(r) is again zero, y,

!t(x\ : Fdk' + Ge da .

Ir between (Region ID, of coulse, I car't t€ll you whar f is until you speciry the
poiential. but because tle Schttdinger equation is a linear, seco ,order difiereftial
equatiotr, the general solution has got to be of the foIm

\b('t:cy'("\+DgO)'
where f(r) a g(r) arc two linearly independeDt particular solutions.4 There
will be four boundary conditions (try joining R€gions I and II, and two joining

t2.r73l

t2.r741

v('l

Region tllRegion I

FIGURE 2.22: Settsins fron an arbiBafy localized potatial (V(r) = 0 {ept in
Resion tr); Probl@ 2.52.

L'R. E Cmd,jl dd B. R Ut AMk of PhFics, l&, 458 11983)-
4Se any bmk on difeentlal equalios-for eianple t L. Ve rw4den, ORliMrr Diffe€ntial

EqtutiN with Nwical lehtr4ar, Harcoun BI@ Jovdovic!, Sm Dicgo, 19!5. clEpier l-
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Regions Il and III). Two of these can be used to eliminate C and D, and the other

two can be "solved' for B and F in terms of A and G:

B :  S r A  *  S r z G ,  F : s 2 l A + . 1 2 2 G .

The four coefficients sij, which depend on k (and hence on ,), cotrstitute a 2 x 2
matrix S, caled ttle scatfering matrix (or S-matrix, for short). The S matdx tells
you the outgo g amplitudes (B atrd D in tenns of the incoming amplitudes (A

and Gl:

{ ? I - rs l ,)  f :)  12 r7sr
\ r . /  U l  s r l , - ,

In the typical case of scattering from the left, G : 0, so the reflection and aans-
mission coeflicients are

*=fi];[.=.,:,' 'P, a:1#lo o:r',t'
For scattering ftom the right, A = 0, and

o. : ]ff11,_ : r',r,,'. : ffil,- = rs"p.
(a) Construct the S-natrix for scattering ftom a delta-function

non 2.114).

[2.1',761

12.l',t',7)

well @qua-

{b) Construct the S-matrix foi the finite square well (Equatior 2.145) Hinl This
requircs tro new work if you caretulty exploit the symmetrv of th€ pmblem.

x x xProblem 2.53 Thc transfer mstrix. The s-matrix ("roblem 2.52) tells you the

orrgoins amplitudes (B and F) in lelms of the idcorltn8 arnplitudes (/t and

G) Equation 2-175- For somc Purposes it is morc convenient to work with the

hansfer matrix, M, which gives you the amplitudes to the r',t8ftt of the polential
(F and G) terms of those to the kJq (A and D):

([):(Y;: Y':)(A) l2.t78l

(a) Find tfre four elements of lhe M-matrix, in tellns of the blenent! of dre
S-matrix, and vice vcrsa. ExFess Rr, ?l, R., and 4- @quations 2.i76 and
2.177, in lcrms of elemenl\  of  the M_mrlr ix

(b) Suppose you have a potential consisting of two isolated pieces (Figure 2.23).

Show that the M matrix for th€ combination is the prdd(.t ol the two

M-matdces for each section separatety:

12.r'191

(This obviously generaiizes to any number of pieces, and accounts for the

us€fulness of the M matrix.)
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CHAEER3FIG{JRE 2.23: A potorial @rsisting of rwo ;solared piec6 (Problem 2.53).

(c) Co$truct the ru-rnatsix for scanering ftom a siryle delta-fundion potential
at polnt ll:

v( i :  -a6(I  -  a\ .

{d) By the medDd of palt (b), find tlrc M-matrix for scanering ftom rhe double
delta firnction

Y(-r) : -dtd(' +a) +5(r - a)1.

mat is the transmission coefdcient for this poterrial?

Problem 2.54 Find ihe gioutrd stare €nergy of 1ile harmonic oscillator ro five sig-
nificad digits, by the "wag-the-dog' ned|od- That is, solve Eqration 2.72 numer-
ically, varying r unlil yo'r get a wave fuction ihat goes to zero at large f. Ir
Mathenalic4 appropriate input code would be

Plof{Evaluat€[dxy.fNDsolvet{u,,tr] -(l - 4*utx1 : 0, uIOl : 1,
u't0l : 01, utxl, {r, r0-3, 10}, Mardteps -> 1000011, {x, & bt,
PbrRang€ -> (c, dll;

(Here (a, ,) is dle horizontal range of the gmph, and (c, d) ;s the verticaf rarye-
$an with l' :0, , : 10, c - -10, d- 10.) We Imow thar the correst solurion is
lr : 1, so you dight start with a '?u/ss" of r : 0.9. Noric€ whar the "rail" of the
wave tunction does. Now iD' r : 1.1, ald trore rlar dhe rail flips over. Somewherc
in betwe€tr ahose values Iies the cort€ct solution. Zero in on it by bracketing tr
tighter and tighter. As you do so, you rnay want to adjust d, ,, ., and d, to zem
in on the cross-over Doint.

Problem 2.55 Find the 6rst &ree excited s.ate energies (io five significant digirs)
for the harmonic oscilla.or, by wagging the dog (Problem 2.54). For the 6rsr (and
thtud) excited stale you wilt ne€d to set ,[0] ::0, t /[0] =: 1.

Problem 2.56 Find the tust four alowed energies (ro five significant digits) for
tne infinite square we[, by wagging the dog. Inr... Refer to Problem 2.54, making
appropnate changes to the differential equatiotr- This time the conditior you are
looking for is r(l) : 0.
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