68 Chapter 2 Time-Independent Schridinger Equation

2.5.1 Bound States and Scattering States

We have encountered two very different kinds of solutions to the time-independent
Schriédinger equation: For the infinite square well and the harmonic oscillator they
arc normalizable, and labeled by a discrete index n; for the free particle they are
non-normalizable, and labeled by a continuous variable k. The former represent
physically realizable states in their own right, the latter do not; but in both cases the
general solution to the time-dependent Schridinger equation is a linear combination
of stationary states—for the first type this combination takes the form of a sum
(over n), whereas for the second it is an integral (over k). What is the physical
significance of this distinction?

In classical mechanics a one-dimensional time-independent potential can give
rise to two rather different kinds of motion. If V (x) rises higher than the particle’s
total energy (E) on either side (Figure 2.12(a)), then the particle is “stuck” in the
potential well—it rocks back and forth between the turning peints, but it cannot
escape (unless, of course, you provide it with a source of extra energy, such as
a motor, but we’re not talking about that). We call this a bound state. If, on the
other hand, E exceeds V(x) on one side (or both), then the particle comes in from
“infinity,” slows down or speeds up under the influence of the potential, and returns
to infinity (Figure 2.12(b)). (It can’t get trapped in the potential unless there is some
mechanism, such as friction, to dissipate energy, but again, we’re not talking about
that.) We call this a scattering state. Some potentials admit only bound states (for
instance, the harmonic oscillator); some allow only scattering states (a potential
hill with no dips in it, for example); some permit both kinds, depending on the
energy of the particle.

The two kinds of solutions to the S€hrédinger equation correspond precisely to
bound and scattering states. The distinction is even cleaner in the quantum domain,
because the phenomenon of tunneling (which we’ll come to shortly) allows the

" particle to “leak” through any finite potential barrier, so the only thing that matters

is the potential at infinity (Figure 2.12(c)):
E < [V(—o0) and V(4+oc0)] = bound state, [2.109]
E = [V(—00) or V(+4c0)]= scattering state. '

In “real life” most potentials go to zere at infinity, in which case the criterion
simplifies even further:

E<0 bound state,

T \ [2.110]

E > 0= scatlering slate.

Because the infinite square well and harmonic oscillator potentials go to infinity as
x — T oo, they admit bound states only; because the free particle potential is zero
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Classical turning points
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FIGURE 2.12: (a) A bound state. (b) Scattering states. (c) A classical bound state, but
a quantum scattering state.

everywhere, it only allows scattering states.’* In this section (and the following
one) we shall explore potentials that give rise to both kinds of states.

g you are irritatingly observant, you may have noticed that the general theorem requiring
E = Vi (Problem 2.2) does not really apply (o scatlering states, since they are not normalizable
anyway. If this bothers you, try solving the Schridinger equation with £ < (), for the free particle. and
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A 8(x)

» FIGURE 2.13: The Dirac delta function
h x  (Equation 2.111).

2.5.2 The Delta-Function Well

The Dirac delta function is an infinitely high, infinitesimally narrow spike at the
origin, whose area is 1 (Figure 2.13):

i +o0
5(););{0‘ i 4ot } withf §(x)dx = 1. [2.111]

oo, ifx=0 i

Technically, it isn’t a function at all, since it is not finite at x = 0 (mathematicians
call it a generalized function, or distributim‘n).35 Nevertheless, it is an extremely
useful construct in theoretical physics. (For example, in electrodynamics the charge
density of a point charge is a delta function.) Notice that §(x —a) would be a spike
of area 1 at the point a. If you multiply 8(x —a) by an ordinary function f(x),
it's the same as multiplying by f(a),

F)8G —a) = f(@)sx —a), [2.112]

>

: / : ,
because the product is zero anyway except at the point a. In particular,

+00 ’ +oo
[ fx)d(x —a)dx = jf(a)f §(x —a)dx = f(a). [2.113]
—x0 —0o0

That's the most important property of the delta function: Under the integral sign it
serves to “pick out” the value of f(x) at the point a. (Of course, the integral need
not go from —oo to +o0: all that matters is that the domain of integration include
the point a, so a —€ toa + ¢ would do, for any € > 0.)

Let’s consider a potential of the form

Vix) = —adx), [2.114]

note that even linear combinations of these solutions cannot be normalized. The positive encrgy solutions
by themselves constituie 4 complete set.

35The delta function can be thought of as the limir of a sequence of functions, such as rectangles
(or triangles) of ever-increasing height and ever-decreasing width.
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where a is some positive constant 8 This is an artificial potential, to be sure (so was
the infinite square well), but it’s delightfully simple to work with, and illuminates
the basic theory with a minimum of analytical clutter. The Schridinger equation

for the delta-function well reads
B d*y
__... —dxl —ad(x)r = Evyr; [2.115]

it yields both bound states (E < 0) and scattering states (E > 0).
We’ll look first at the bound states. In the region x < 0, V(x) =0, so

d*y 2mE 2 ;

-cf—xz = ——-—-—kz 'ljf == 'Qﬂ', [2.] 16J
where —
=2mE

= Hﬁm ) [2.117]

(E is negative, by assumption, so « is real and positive.) The general solution to
Equation 2.116 is
Yr(x) = Ae” " + Be", [2.118]

but the first term blows up as x — —o0, S0 we must choose A=0
¥ (x) = B, (x <0). [2.119]

In the region x > 0, V(x) is again zero, and the general solution is of the form
F exp(—«x) + G exp(kx); this time it’s the second term that blows up (as x —
+00), so

Yx)=Fe ™, x=>0). [2.120]

It remains only to stitch these two functions together, using the appropriate
boundary conditions at x = 0. I quoted earlier the standard boundary conditions
for yr:

1. is always continuous; %
; 5 " G s e [2.121]
2. dy/dx 1s continuous except at points where the potential is infinite.

In this case the first boundary condition tells us that F* = B, so

Be*, (x=0),

t,ff(x)zl Be, (x> 0); [2.122]

36The delta function itself carries units of Llength (sec Equation 2.111), so & has the dimensions
energy % length.
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FIGURE 2.14: Bound state wave function for the delta-function potential (Equa-
tion 2.122).

¥ (x) is plotted in Figure 2.14. The second boundary condition tells us nothing;
this is (like the infinite square well) the exceptional case where V is infinite at the
Join, and it’s clear from the graph that this function has a kink at x = 0. Moreover,
up to this point the delta function has not come into the story at all. Evidently the
delta function must determine the discontinuity in the derivative of v, at x = 0.
I'll show you now how this works, and as a by-product we’ll see why dv/dx is
ordinarily continuous.
The idea is to integrate the Schrodinger equation, from —e to e, and then
take the limit as € — 0:
B2 e divff f+€ +e

- —dx + Viv(x)dx =E Yr(x)dx. [2.123]

2m J_. dx? E 2

The first integral is nothing but dv/dx, evaluated at the two end points; the last
integral is zero, in the limit € — 0, since it’s the area of a sliver with vanishing
width and finite height. Thus

—vE rd

A(@) 24y Ay
dx dx

+€ dx
Typically, the limit on the right is again zero, and that’s why d/dx is ordinarily
continuous. But when V(x) is infinite at the boundary, this argument fails. In
particular, if V(x) = —a8(x), Equation 2.113 yields

dy\ _ 2ma
A (E) = -7V (. [2.125]

For the case at hand (Equation 2.122),

dyr/dx = —Bie™™, for (x >0), sody/dx|, =—B,
dyr/dx = +Bxe™™, for (x <0), sody/dx|_=+Bx,

#

7
2m . +e -
> ﬁ—ze]ﬂ}b[_e V@) (x) dx. [2.124]

and hence A(dv/dx) = —2Bk. And (0) = B. So Equation 2.125 says

»
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and the allowed energy (Equation 2.117) is

B Rkt mao®

Finally, we normalize 1:

—
so (choosing, for convenience, the positive real root):

&/ o

+00 -
f [ @) dx = 2|B!2f e .
0

1BIE _

K

[2.127]

]s

[2.128]

Evidently the delta-function well, regardless of its “strength™ a, has exactly one

bound state:

ﬂf(x) = ¥ ey e—maixlg‘ﬁz.
};’ 2

2
mao-

2h2°

[2.129]

What about scattering states, with E > 0? For x < 0 the Schrédinger equation

reads

where

2mE
h

is real and positive. The general solution is

V(x) = A’ + Be

[2.130]

[2.131]

and this time we cannot rule out either term, since neither of ‘them blows up.

Similarly, for x = 0, : y
V(x) = Fe™ + Ge™™,

The continuity of ¥r(x) at x = 0 requires that
F+G=A+B.

The derivatives are

dy/dx = ik (Fe™ — Ge™**), for (x > 0), sody/dx
for (x <0), sody/dx|_=ik(A - B),

dyr/dx = ik (Ae™ — Be=ikx)

4

[2.132]

[2.133]

=ik(F — G),
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and hence A(dV/dx) = ik(F —G — A+ B). Meanwhile, ¥(0) = (A + B), so the
second boundary condition (Equation 2.125) says

. 2mao
Ek(F—G—-A—I—B):—?(A—I—B}, [2.134]

or, more compactly,

F—G=A(+2iB) — B(1—2ip), where = }"iz% [2.135]
%

Having imposed both boundary conditions, we are left with two equations
(Equations 2.133 and 2.135) in four unknowns (A, B, F, and G)—five, if you
count k. Normalization won’t help—this isn’t a normalizable state. Perhaps we'd
better pause, then, and examine the physical significance of these various con-
stants. Recall that exp(ikx) gives rise (when coupled with the time-dependent
factor exp(—i Et/h)) to a wave function propagating to the right, and exp(—ikx)
leads to a wave propagating to the left. It follows that A (in Equation 2.131) is the
amplitude of a wave coming in from the left, B is the amplitude of a wave return-
ing to the left, F (Equation 2.132) is the amplitude of a wave traveling off to the
right, and G is the amplitude of a wave coming in from the right (see Figure 2.13).
In a typical scattering experiment particles are fired in from one direction—Ilet’s
say, from the left. In that case the amplitude of the wave coming in from the right
will be zero:

G =0, (for scattering from the left); [2.136]

A is the amplitude of the incident wave, B is the amplitude of the reflected wave,
and F is the amplitude of the transmitted wave. Solving Equations 2.133 and
2.135 for B and F, we find &

' 1
. O [2.137]
1-iB 1—ip

(If you want to study scattering from the right, set A = 0; then G is the incident
amplitude, F is the reflected amplitude, and B is the transmitted amplitude.)

B

A

A eka Fefk X
Baikx Ge—ikx

X

- FIGURE 2.15: Scattering from a delta func-
tion well.
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Now, the probability of finding the particle at a specified location is given by
|W|2, so the relative®’ probability that an incident particle will be reflected back is
|BJ? B

R is called the reflection coefficient. (If you have a beam of particles, it tells
you the fraction of the incoming number that will bounce back.) Meanwhile, the
probability of transmission is given by the transmission coefficient
T= IFP? -t [2.139]
T AR 148 '

Of course, the sum of these probabilities should be |—and it is:
R+T=1. [2.140]

Notice that R and T are functions of f, and hence (Equations 2.130 and 2135)
of E:

1 1
R o s, P e e 2.141
1 + (2K*E [ma?) 1 + (mo?/2RE) L

The higher the energy, the greater the probability of transmission (which certainly
seems reasonable).

This is all very tidy, but there is a sticky matter of principle that we cannot
altogether ignore: These scattering wave functions are not normalizable, so they
don’t actually represent possible particle states. But we know what the resolution to
this problem is: We must form normalizable linear combinations of the stationary
states, just as we did for the free particle—true physical particles are represented
by the resulting wave packets. Though straightforward in principle, this is a messy
business in practice, and at this point it is best to tumn the problem over to a
computer.*® Meanwhile, since it is impossible to create a normalizable free-particle
wave function without involving a range of energies, R and T should be interpreted
as the approximate reflection and transmission probabilities for particles in the
vicinity of E. ’

Tncidentally, it might strike you as peculiar that we were able to analyze a
quintessentially time-dependent problem (particle comes in, scatters off a potential,

37This is not a normalizable wave function, so the absolufe probability of finding the particle
at a particular location is not well defined; nevertheless, the ratio of probabilities for the incident and
reflected waves is meaningful. More on this in the next paragraph.

38 Numerical studies of wave packets scattering off wells and barriers reveal extraordinarily rich
structure. The classic analysis is A. Goldberg, H. M. Schey, and T. L. Schwartz. Am. J. Phys. 35, 177
(1967); more recent work can be found on the Web.
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V(x) = o:8(x)

-

I X  FIGURE 2.16: The delta-function barrier.

and flies off to infinity) using stationary states. After all, ¥ (in Equations 2.131
and 2.132) is simply a complex, time-independent, sinusoidal function, extending
(with constant amplitude) to infinity in both directions. And yet, by imposing
appropriate boundary conditions on this function we were able to determine the
probability that a particle (represented by a localized wave packet) would bounce
off, or pass through, the potential. The mathematical miracle behind this is, I
suppose, the fact that by taking linear combinations of states spread over all space,
and with essentially trivial time dependence, we can construct wave functions that
are concentrated about a (moving) point, with quite elaborate behavior in time (see
Problem 2.43).

As long as we’ve got the relevant equations on the table, let’s look briefly at
the case of a delta-function barrier (Figure 2.16). Formally, all we have to do is
change the sign of «. This kills the bound state, of course (Problem 2.2). On the
other hand, the reflection and transmission coefficients, which depend only on o?,
are unchanged. Strange to say, the particle is just as likely to pass through the barrier
as to cross over the well! Classically, of course, a particle cannot make it over an
infinitely high barrier, regardless of its energy. In fact, classical scattering problems
arc pretty dull: If E > Vpax, then T = 1 and R = O—the particle certainly
makes it over; if E < Vpax then 77= 0 and R = 1—it rides up the hill until
it runs out of steam, and then returns the same way it came. Quantum scattering
problems are much richer: The particle has some nonzero probability of passing
through the potential even if E < Vimax. We call this phenomenon tunneling; it is
the mechanism that makes possible much of modern electronics—mnot fo mention
spectacular advances in microscopy. Conversely, even if E > Vi there is a
possibility that the particle will bounce back—though I wouldn’t advise driving
off a cliff in the hope that quantum mechanics will save you (see Problem 2.35).

x«Problem 2.23 Evaluate the following integrals:
() [He3 =352+ 2x - DS(x +2) dx.
(b) J5°lcos(3x) +218(x — 7) dx.
(©) S exp(xl +3)8(x —2) dx.
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Problem 2.24 Delta functions live under integral signs, and two expressions (D} (x)
and D3 (x)) involving delta functions are said to be equal if

+00 +00
| renwax= [ ropea
for every (ordinary) function f(x).
(a) Show that
8(cx) = ifs(x), [2.142]

le]
where ¢ is a real constant. (Be sure to check the case where ¢ is negative.)
(b) Let 8(x) be the step function:

', el
ofx)= [ 0 iteh [2.143]

(In the rare case where it actually matters, we define #(0) to be 1/2.) Show
that d8/dx = §(x).

##Problem 2.25 Check the uncertainty principle for the wave function in
Equation 2.129. Hinz: Calculating (p?) is tricky, because the derivative of ¥ has
a step discontinuity at x = 0. Use the result in Problem 2.24(b). Partial answer:
(p?) = (ma/h)*.

#Problem 2.26 What is the Fourier transform of §(x)? Using Plancherel’s theorem,
show that
1 too
3(x) = 5= [ ™ dk. [2.144]

00

Comment: This formula gives any respectable mathematician apoplexy. Although
the integral is clearly infinite when x = 0, it doesn’t converge (lo zero or any-
thing else) when x # 0, since the integrand oscillates forever. There are ways
to patch it up (for instance, you can integrate from —L to 4L, and interpret
Equation 2.144 to mean the average value of the finite integral, as L — oo0).
The source of the problem is that the delta function doesn’t meetf the requirement
(square-integrability) for Plancherel’s theorem (see footnote 33). In spite of this,
Equation 2.144 can be extremely useful, if handled with care.

sProblem 2.27 Consider the double delta-function potential
Vix) = —ald(x+a)+8x —a)l

where o and a are positive constants.
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(a) Sketch this potential.

(b) How many bound states does it possess? Find the allowed energies, for o =
?/ma and for @ = h?/4ma, and sketch the wave functions.

xxProblem 2.28 Find the transmission coefficient for the potential in Problem 2.27.

2.6 THE FINITE SQUARE WELL

As a last example, consider the finite square well potential

—Vo, for —a=x=a .
! i T k
¥im) l 0, for |x] > a, il
where V is a (positive) constant (Figure 2.17). Like the delta-function well, this
potential admits both bound states (with E < 0) and scattering states (with E > 0).
We’ll look first at the bound states.
In the region x < —a the potential is zero, so the Schrédinger equation reads

m? dry >y "
“wmE oV Wy =k
where
J=2mE
o= X TR [2.146]

7 h

is real and positive. The general solution is ¥ (x) = A exp(—«x) + B exp(kx), but
the first term blows up (as x — —o0); so the physically admissible solution (as
before—see Equation 2.119) is

Y(x) = Be**, forx < —a. [2.147]
AVIX)
-a a
X
Vo
FIGURE 2.17: The finite square well
(Equation 2.145).
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’ In the region —a < x < a, V(x) = —Vp, and the Schrédinger equation reads

a= § m? d*y d*y 2
. Y =B il S
2m dx? oy L dx? o

— | where

B 3 2 E + V

027 | j= Y m% [2.148]
i 1

Although E is negative, for bound states, it must be greater than —Vp, by the

+ old theorem E > Vi, (Problem 2.2); so [ is also real and positive. The general
i solution is??
i
P ¥ (x) = Csin(ix) + Dcos(lx), for —a <x <a, [2.149]
where C and D are arbitrary constants. Finally, in the region x > a the potential
1451  § is again zero; the general solution is ¥(x) = Fexp(—«x) + G exp(kx), but the
i | second term blows up (as x — 00), so we are left with
this £ V(x) = Fe™*, forx > a. [2.150]
- 0
¢ ; The next step is to impose boundary conditions: v and dy/dx continuous at
ds :_ —a and +a. But we can save a little time by noting that this potential is an even
- function, so we can assume with no loss of generality that the solutions are either
E even or odd (Problem 2.1(c)). The advantage of this is that we need only impose
the boundary conditions on one side (say, at +a); the other side is then automatic,
P since ¥ (—x) = Tyr(x). I'll work out the even solutions; you get to do the odd ‘
¢ ones in Problem 2.29. The cosine is even (and the sine is odd), so I'm looking for
46] solutions of the form
Fe™*, for x > a,
but b Y(x)=1{ Dcos(lx), for0<x <a, [2.151]
(as Y(—x), for x < 0.
! The continuity of ¥ (x), at x = a, says
47] | Fe ™ = Dcos(la), i [2.152]
5
i and the continuity of dv/dx, says
F —kFe ™ = —[Dsin(la). [2.153]

Dividing Equation 2.153 by Equation 2.152, we find that
x =l tan(la). [2.154]

el i 3 You can, if you like, write the general solution”in cxponential form (C'e™ + D'e~i¥), This
2 i leads to the same final result, but since the potential is symmetric we know the solutions will be either
i even or odd, and the sine/cosine notation allows us to exploit this directly.
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| | |
A I | I
tan z ]

Y
by

V27

3n/2 2n 5m/2

Y

8 p————

/2
FIGURE 2.18: Graphical solution to Equation 2.156, for zg = 8 {even states).

This is a formula for the allowed energies, since ¥ and [ are both functions
of E. To solve for E, we first adopt some nicer notation: Let

W 2m V. [2.155]

According to Equations 2.146 and 2.148, (k*+1%) = 2mVy /h?, so ka = /25 — 22,

and Equation 2.154 reads
tanz = +/ (z0/2)% — 1. [2.156]

This is a transcendental equation for z (and hence for E) as a function of zp
(which is a measure of the “size” of the well). It can be solved numerically, using
a computer, or graphically, by plotting tanz and /(z¢/z)* — 1 on the same grid,
and looking for points of imersectionff(see Figure 2.18). Two limiting cases are of
special interest: :

1. Wide, deep well. If zg is very large, the intersections occur just slightly
below z,, = nmr /2, with n odd; it foltows that

z=la, and zp=

= | =

Y )

E,+ W= Sm(2a)E [2.157]
But E + Vy is the energy above the bottom of the well, and on the right side
we have precisely the infinite square well energies, for a well of width 2a (see
Equation 2.27)—or rather, half of them, since this n is odd. (The other ones, of
course, come from the odd wave functions, as you'll discover in Problem 2.29.) So
the finite square well goes over to the infinite square well, as Vj — oo; however,
for any finite Vy there are only a finite number of bound states.

_ 2. Shallow, narrow well. As zp decreases, there are fewer and fewer bound
states, until finally (for zo < /2, where the lowest odd state disappears) only one
remains. It is interesting to note, however, that there is always one bound state, no
matter how “weak” the well becomes.
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You're welcome to normalize v (Equation 2.151), if you're interested
(Problem 2.30), but I'm going to move on now to the scattering states (E > 0).
To the left, where V(x) = 0, we have

U(x) = Ae™ + Be ™ for (x < —a), [2.158]
where (as usual)
2mE
b= [2.159]

Inside the well, where V(x) = —V,

Yr(x) = Csin(lx) + Dcos(lx), for (—a <x < a), [2.160]
where, as before,
4 E+ WV
[ = ‘W' [2.161]

To the right, assuming there is no incoming wave in this region, we have
U(x) = Fe**. [2.162]
Here A is the incident amplitude, B is the reflected amplitude, and F is the trans-
mitted amplitude *?
There are four boundary conditions: Continuity of ¥ (x) at —a says
Ae—*ka 4 B — _.Csin(la) + D cos(la), [2.163]
continuity of dir/dx at —a gives
ik[Ae~*a _ Be*] = [[C cos(la) + D sin(la)] [2.164]
continuity of ¥ (x) at +a yields
-Csin(la) + Dcos(la) = Fe™*, [2.165]
and continuity of dyr/dx at 4a requires

I[C cos(la) — Dsin(la)] = ik Fe'®. [2.166)

40wWe could look for even and odd functions, as we did in the case of bound slates, but the
scattering problem is inherently asymmetric, since the waves come in from onc side only, and the
exponential notation (representing traveling waves) is more natural in this context.
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E

FIGURE 2.19: Transmission coefficient as a function of energy (Equation 2.169).

We can use two of these to climinate C and D, and solve the remaining two for
B and F (see Problem 2.32):

sin(2la) 5 5
(" —k5)F, 2.167
i ( IE, [ ]

—2ika
e A :
F= I . [2.168]
cos(2la) — J(—Zgrl sin(2la)

=1

The transmission coefficient (T = |F[*/ |A|%), expressed in terms of the orig-
inal variables, is given by

r2

2a
T-' =14+ ——0 sin’ (? 2m(E + Vo}) : [2163]

AE(E + Vo)
Notice that T = 1 (the well becomes “transparent”) whenever the sine is zero,

which is to say, when
2
—h‘f,xfm(sn ¥ Vo) = nr, [2.170]

where n is any integer. The energies for perfect transmission, then, are given by
ntn?h?
2m(2a)?’

which happen to be precisely the allowed energies for the infinite square well. T
is plotted in Figure 2.19, as a function of energy. 4!

E,+Vo= [2.171]

«Problem 2.29 Analyze the odd bound state wave functions for the finite square
well. Derive the transcendental equation for the allowed energies, and solve it
graphically. Examine the two limiting cases. Is there always an odd bound state?

#1This remarkable phenomenon has been observed in the laboratory, in the form of the Ramsauer-
Townsend effect. For an illuminating discuision see Richard W. Robinett, Quantum Mechanics, Oxford
P, 1997, Section 12.4.1.

T
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Problem 2.30 Normalize ¥ (x) in Equation 2.151, to determine the constants D
and F.

Problem 2.31 The Dirac delta function can be thought of as the limiting case ofa
rectangle of area 1, as the height goes to infinity and the width goes to zero. Show
that the delta-function well (Equation 2.114) is a “weak” potential (even though it
is infinitely deep), in the sense that zp — 0. Determine the bound state energy for
the delta-function potential, by treating it as the limit of a finite square well. Check
that your answer is consistent with Equation 2.129. Also show that Equation 2.169
reduces to Equation 2.141 in the appropriate limit.

Problem 2.32 Derive Equations 2.167 and 2.168. Hinz: Use Equations 2.165 and
2.166 to solve for C and D in terms of F:

k y k ;
tli= [sin(lr:] +EI c-os(la)] eMF. D= [cos{!a) - E—I— sin(!a}] &M F.

Plug these back into Equations 2.163 and 2.164. Obtain the transmission coefficient,
and confirm Equation 2.169.

«xProblem 2.33 Determine the transmission coefficient for a rectangular barrier

(same as Equation 2.145, only with V(x) = +Vp > 0 in the region —a < x < a).
Treat separately the three cases £ < Vp, E = Vg, and E > Vp (note that the
wave function inside the barrier is different in the three cases). Partial answer: For
E < Vo,

13 p)
Tl =14+ — sinh? (§\f2m(VU - E)) ;

4E(Vo — E)

+Problem 2.34 Consider the “step” potential:

0, ifx<0,
V&’_[th if x > 0.

(a) Calculate the reflection coefficient, for the case E < Vp, and comment on
the answer.

(b) Calculate the reflection coefficient for the case E > Vp.

(¢) For a potential such as this, which does not go back to zero to the right of
the barrier, the transmission coefficient is not simply |F 12/]A|* (with A the

42This is a good example of wnneling—classicaily the particle would bounce back.
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AV(x)

_VU

FIGURE 2.20: Scattering from a “cliff” (Problem 2.35).

(d)

incident amplitude and F the transmitted amplitude), because the transmitted
wave travels at a different speed. Show that

B~y |5
V E A
for E > Vp. Hint: You can figure it out using Equation 2.98, or—more ele-

gantly, but less informatively—from the probability current (Problem 2.19).
What is T, for E < V;?

[2.172]

For E > Vp, calculate the transmission coefficient for the step potential, and
checkthat T + R = 1.

Problem 2.35 A particle of mass m and kinetic energy E > 0 approaches an
abrupt potential drop Vy (Figure 2.20).

(a)

. (b)

What is the probability that it will' “reflect” back, if £ = Vj/3? Hint: This
is just like Problem 2.34, except that the step now goes down, instead of up.

I drew the figure so as to make you think of a car approaching a cliff, but
obviously the probability of “bo[mcing back” from the edge of a cliff is far
smaller than what you got in (a)—unless you’re Bugs Bunny. Explain why
this potential does not correctly represent a cliff. Hint: In Figure 2.20 the
potential energy of the car drops discontinuously to —Vp, as it passes x = 0;
would this be true for a falling car?

When a free neutron enters a nucleus, it experiences a sudden drop in poten-
tial energy, from V = 0 outside to around —12 MeV (million electron volts)
inside. Suppose a neutron, emitted with kinetic energy 4 MeV by a fission
event, strikes such a nucleus. What is the probability it will be absorbed,
thereby initiating another fission? Hint: You calculated the probability of
reflection in part (a); use 7 = 1 — R to get the probability of transmission
through the surface.

]
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FURTHER PROBLEMS FOR CHAPTER 2

Problem 2.36 Solve the time-independent Schrodinger equation with appropri-
ate boundary conditions for the “centered” infinite square well: V(x) = 0 (for
—a < x < +a), V(x) = oo (otherwise). Check that your allowed energies are
consistent with mine (Equation 2.27), and confirm that your y’s can be obtained
from mine (Equation 2.28) by the substitution x — (x + a)/2 (and appropriate
renormalization). Sketch your first three solutions, and compare Figure 2.2. Note
that the width of the well is now 2a.

Problem 2.37 A particle in the infinite square well (Equation 2.19) has the initial
wave function

P(x,0) = Asin’(rx/a) (0 <x < a).

Determine A, find W(x, 7), and calculate (x), as a function of time. What is the
expectation value of the energy? Hint: sin” @ and cos” 6 can be reduced, by repeated
application of the trigonometric sum formulas, to linear combinations of sin(m8)
and cos(m@), withm =0,1,2, ... . n.

+Problem 2.38 A particle of mass  is in the ground state of the infinite square well
(Equation 2.19). Suddenly the well expands to twice its original size—the right
wall moving from a to 2a—Ileaving the wave function (momentarily) undisturbed.
The energy of the particle is now measured.

(a) What is the most probable result? What is the probability of getting that
result?

(b) What is the next most probable result, and what is its probability?

(c) What is the expectation value of the energy? Hint: If you find yourself
confronted with an infinite series, try another method.

Problem 2.39

(a) Show that the wave function of a particle in the infinite square well returns
to its original form after a quantum revival time 7 = 4mqa? Jmh. That is:
W(x,T) = ¥(x,0) for any state (not just a stationary state).

(b) What is the classical revival time, for a particle of energy £ bouncing back
and forth between the walls?

(c) For what energy are the two revival times equal?*

4The fact that the classical and quantum revival times bear no obvious relation to one another
(and the quantum one doesn’t even depend on the energy) is a curious paradox; see Daniel Styer,
Am. I Phys. 69, 56 (2001).
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Problem 2.40 A particle of mass m is in the potential

00 (x <0),
Vix) =14 —320%/ma* (0 <x <a),
0 (x > a).

(a) How many bound states are there?

(b) In the highest-energy bound state, what is the probability that the particle
would be found outside the well (x > a)? Answer: 0.542, so even though it
is “bound” by the well, it is more likely to be found outside than inside!

Problem 2.41 A particle of mass m in the harmonic oscillator potential
(Equation 2.43) starts out in the state

Hw > _mum 2
\y(x,O):A(1—2 Tx) M

for some constant A.

(a) What is the expectation value of the energy?

(b) At some later time T the wave function is

2
W(x,T) = B (1 48 /”;—“’x) o

for some constant B. What is the smallest possible value of T?

=
=

7
Problem 2.42 Find the allowed energies of the Aalf harmonic oscillator

Vo) = i S;ﬂ)mwzxz, for x > 0,

for x < 0.

(This represents, for example, a spring that can be stretched, but not compressed.)
Hint: This requires some careful thought, but very little actual computation.

# #Problem 2.43 In Problem 2.22 you analyzed the stafionary gaussian free particle
wave packet. Now solve the same problem for the traveling gaussian wave packet,
starting with the initial wave function

W(x,0) = Ae— 4 ellx,

where [ is a real constant.

s
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 «Problem 2.44 Solve the time-independent Schrédinger equation for a centered
infinite square well with a delta-function barrier in the middle:

ad(x), for —a <x < +a,
oo, for |x| = a.

V(x):{

Treat the even and odd wave functions separately. Don’t bother to normalize them.
Find the allowed energies (graphically, if necessary). How do they compare with
the corresponding energies in the absence of the delta function? Explain why the
odd solutions are not affected by the delta function. Comment on the limiting cases
a — 0 and a — oo.

Problem 2.45 If two (or more) distinct®® solutions to the (time-independent)
Schrodinger equation have the same energy E, these states are said to be degen-
erate. For example, the free particle states are doubly degencrate—one solution
representing motion to the right, and the other motion to the left. But we have never
encountered normalizable degenerate solutions, and this is no accident. Prove the
following theorem: In one dimension™® there are no degenerate bound states. Hini:
Suppose there are two solutions, ¥ and yrp, with the same energy E. Multiply the
Schrédinger equation for ¥ by 2, and the Schrodinger equation for vy by ¥,
and subtract, to show that (Yadr /dx — yridyra/dx) is a constant. Use the fact
that for normalizable solutions ¥ — 0 at t oo to demonstrate that this constant is
in fact zero. Conclude that v, is a multiple of ¢y, and hence that the two solutions
are not distinct.

Problem 2.46 Imagine a bead of mass m that slides frictionlessly around a circular
wire ring of circumference L. (This is just like a free particle, except that ¥r(x +
L) = ¥(x).) Find the stationary states (with appropriate normalization) and the
corresponding allowed energies. Note that there are fwo independent solutions for
each energy E,—corresponding to clockwise and counter-clockwise circulation;
call them ¥ (x) and ¥, (x). How do you account for this degeneracy, in view of
the theorem in Problem 2.45 (why does the theorem fail, in this case)?

+#Problem 2.47 Attention: This is a strictly qualitative problem—l—no calculations
allowed! Consider the “double square well” potential (Figure 2.21). Suppose the

4475 1wo solutions differ only by a multiplicative constant (so that, once normalized, they differ
only by a phase lactor '?), they represent the same physical state, and in this sense they are not distinct
solutions. Technically, by “distinct” | mean “linearly independent.”

431 higher dimensions such degeneracy is very common, as we shall sec in Chapter 4. Assume
that the potential does not consist of isolated pieces separated by regions where V = co—two isolated
infinite square wells, for instance, would give rise to degenerate bound states, for which the particle is
cither in the one or in the other. "
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A V(x)

B

_VO

FIGURE 2.21: The double square well (Problem 2.47).

depth Vo and the width a are fixed, and large enough so that several bound states
oceur.

(a)
(b)

()

Sketch the ground state wave function v and the first excited state ¥,
(i) for the case b = 0, (ii) for b ~ a, and (iii) for b >> a.

Qualitatively, how do the corresponding energies (E1 and E) vary, as b goes
from 0 to oco? Sketch E|(b) and E;(b) on the same graph.

The double well is a very primitive one-dimensional model for the potential
experienced by an electron in a diatomic molecule (the two wells represent
the attractive force of the nuclei). If the nuclei are free to move, they will
adopt the configuration of minimum energy. In view of your conclusions in
(b), does the electron tend to draw the nuclei together, or push them apart?
(Of course, there is also the internuclear repulsion to consider, but that's a
separate problem.) 7

Problem 2.48 In Problem 2.7(d) you got the expectation value of the energy by
summing the series in Equation 2.39, but I warned you (in footnote 15) not to try it
the “old fashioned way,” (H) = f W(x, 0)*HW¥(x, 0)dx, because the discontinu-
ous first derivative of U (x, 0) renders the second derivative problematic. Actually,
you could have done it using integration by parts, but the Dirac delta function
affords a much cleaner way to handle such anomalies.

(a)

(b)

(c)

Calculate the first derivative of W(x, 0) (in Problem 2.7), and express the
answer in terms of the step function, 8 (x — a/2), defined in Equation 2.143.
(Don’t worry about the end points—just the interior region 0 < x < a.)

Exploit the result of Problem 2.24(b) to write the second derivative of W (x, 0)
in terms of the delta function.

Evaluate the integral [ W(x,0)*HW¥(x,0)dx, and check that you get the
same answer as before.

sl

* % %]
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L * % *Problem 2.49
(a) Show that

1/4 g , ihr )
W(x, )= @ exp __'@ IZ i a—(l 5! e—QmJ!‘) + "'_ — 2gxe et
wh 2h 2 m

satisfies the time-dependent Schrodinger equation for the harmonic oscillator
potential (Equation 2.43). Here a is any real constant with the dimensions of
length.*

hat e e i

(b) Find |W¥(x, t)]l, and describe the motion of the wave packet.

(c) Compute {x) and (p), and check that Ehrenfest’s theorem (Equation 1.38) is
satisfied. '

#xProblem 2.50 Consider the moving delta-function well:
Vix,t) = —ad(x —vt),
where v is the (constant) velocity of the well.

(a) Show that the time-dependent Schridinger equation admits the exact solution

W(x, 1) = V:‘“ p—malx—vt|/R? —i[(E+(1/Dmv)t—mux]/h

where E = —ma? /th2 is the bound-state energy of the starionary delta
function. Hint: Plug it in and check it! Use the result of Problem 2.24(b).

(b) Find the expectation value of the Hamiltonian in this state, and comment on
the result.

% % xProblem 2.51 Consider the potential

2.2
Vi)
m

sechz(ax},
where a is a positive constant, and “sech” stands for the hyperbdlic secant.
(a) Graph this potenﬁal.
(b) Check that this potential has the ground state
Yrg(x) = A sech(ax),

ARSI

and find its energy. Normalize Y, and sketch its graph.

46This rare example of an exact closed-form solution to the time-dependent Schriidinger equation
was discovered by Schrédinger himself, in 1926. ~
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(c) Show that the function

ik —atanh(ax)\ ..

X)=Al ——— )™,

Vi (x) ( e ) :

(where k = +/2mE /A, as usual) solves the Schrédinger equation for any
(positive) energy E. Since tanhz — —1 as z — —c0,

Ur(x) ~ Ae™ | for large negative x.

This represents, then, a wave coming in from the left with no accompany-
ing reflected wave (i.e., no term exp(—ikx)). What is the asymptotic form
of Yy (x) at large positive x? What are R and T, for this potential? Com-
ment: This is a famous example of a reflectionless potential —every incident
particle, regardless of its energy, passes right throughf'?

Problem 2.52 The scattering matrix. The theory of scattering generalizes in
a pretty obvious way to arbitrary localized potentials (Figure 2.22). To the left
(Region I), V(x) =0, so

. ) 2mE
Y(x) = A + Be™™ | where k = : . [2.173]
To the right (Region III), V (x) is again zero, so
Y(x) = Fe™ 4 G, [2.174]

In between (Region II), of course, I can’t tell you what v is until you specify the
potential, but because the Schrddinger equation is a linear, second-order differential
equation, the general solution has got to be of the form

¥(x) = (;f(X} + Dg(x),

where f(x) and g(x) are two linearly independent particular solutions.*® There

. will be four boundary conditions (two joining Regions I and II, and two joining

Aghkx V(x) Faikx
e T —
-~ -

Be—akx Ge—rkx

P, -
Y x
Region | Region Il Region Il

FIGURE 2.22: Scattering from an arbitrary localized potential (V(x) = 0 except in
Region II); Problem 2.52.

#TR. E. Crandall and B. R. Litt, Annals of Physics, 146, 458 (1983).

48See any book on differential equations—for example, J. L. Van Iwaarden, Ordinary Differential
Equations with Numerical Technigues, Harcourt Brace Jovanovich, San Dicgo, 1985, Chapter 3.
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. Regions II and III). Two of these can be used to eliminate C and D, and the other
3 two can be “solved” for B and F in terms of A and G:
L B = SiiA+ 512G, F=5,A+ 5nG.

. The four coefficients S;;, which depend on & (and hence on E), constitute a 2 x 2
“ matrix S, called the scattering matrix (or S-matrix, for short). The S-matrix tells
; you the outgoing amplitudes (B and F) in terms of the incoming amplitudes (A

r and G):
B\ _(Sun Su\[(A
F] \Sun S$»/\G)’

In the typical case of scattering from the left, G = 0, so the reflection and trans-
mission coefficients are

[2.175]

SRR

= |B? |F?
1 Bl = Sifl? = | = 1521 12 [2.176]
1 I | G=0 | [ G=0
| For scattering from the right, A =0, and
|FI? |BI*
Ry =iy =S, T=1=5 =[Szl [2.177]
1G] 40 G40
(a) Construct the S-matrix for scattering from a delta-function well (Equa-
tion 2.114).

(b) Construct the S-matrix for the finite square well (Equation 2.145). Hint: This
requires no new work, if you carefully exploit the symmetry of the problem.

# % #Problem 2.53 The transfer matrix. The S-matrix (Problem 2.52) tells you the
outgoing amplitudes (B and F) in terms of the incoming amplitudes (A and
G)—Equation 2.175. For some purposes it is more convenient to work with the
transfer matrix, M, which gives you the amplitudes to the right of the potential
(F and G) in terms of those to the left (A and B):

F\ (Mu Mip A
G) \My Mn)\B)’
(a) Find the four elements of the M-matrix, in terms of the tlements of the

S-matrix, and vice versa. Express R;, Tj, Ry, and 7, (Equations 2.176 and
2.177) in terms of elements of the M-matrix.

[2.178]

(b) Suppose you have a potential consisting of two isolated pieces (Figure 2.23).
Show that the M-matrix for the combination is the product of the two
M-matrices for each section separately:

M = M:M;.

(This obviously generalizes to any number of pieces, and accounts for the
usefulness of the M-matrix.) ’

[2.179]
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M, ~ M, kS X
(eSS . 5 ; iy
V=0 V=0 V=0

FIGURE 2.23: A potential consisting of two isolated pieces (Problem 2.53).

(c) Construct the M-matrix for scattering from a single delta-function potential
at point a:
Vix) = —ad(x — a).

(d) By the method of part (b), find the M-matrix for scattering from the double
delta function

Vix) = —alf(x+a)+8(x —a)l.

What is the transmission coefficient for this potential?

Problem 2.54 Find the ground state energy of the harmonic oscillator, to five sig-
nificant digits, by the “wag-the-dog” method. That is, solve Equation 2.72 numer-
ically, varying K until you get a wave function that goes to zero at large £. In
Mathematica, appropriate input code would be

Plot[Evaluate[u[x]/.[NDSolve[{u” [x] -(x* - K)*u[x] == 0, u[0] == 1,
u'[0] == 0}, u[x], {x, 1078, 10}, MaxSteps -> 10000]], {x, a, b},
PlotRange -> {c, d}];
(Here (a, b) is the horizontal range of the graph, and (c, d) is the vertical range—
start witha =0, b =10, c = —10, d = 10.) We know that the correct solution is
K =1, so you might start with a “guess” of K = 0.9. Notice what the “tail” of the
wave function does. Now try K = 1.1, and note that the tail flips over. Somewhere

. In between those values lies the correct solution. Zero in on it by bracketing K

tighter and tighter. As you do so, you may want to adjust a, b, ¢, and d, to zero
in on the cross-over point.

Problem 2.55 Find the first three excited state energies (to five significant digits)
for the harmonic oscillator, by wagging the dog (Problem 2.54). For the first (and
third) excited state you will need to set u[0] == 0, u'[0] == 1.

Problem 2.56 Find the first four allowed energies (to five significant digits) for
the infinite square well, by wagging the dog. Hint: Refer to Problem 2.54, making

appropriate changes to the differential equation. This time the condition you are
looking for is u(1) = 0.
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