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TIME-INDEPENDENT
SCHRODINGER EQUATION

2.1 STATIONARY STATES

In Chapter 1 we talked a lot about the wave function, and how you use it to
calculate various quantities of interest. The time has come to stop procrastinating,
and confront what is, logically, the prior question: How do you ger W(x. ) in the

first place? We need to solve the Schrodinger equation,

oV "h2 32w i o
ih— =——— i 2
dt 2m dx2

for a specified potential! V(x, ). In this chapter (and most of this book) I shall
assume that V is independent of t. In that case the Schrodinger equation can be
solyed by the method of separation of variables (the physicist’s first line of attack
on any partial differential equation): We look for solutions that are simple products,

W(x, 1) = Y(x) @), [2.2]

where ¥ (lower-case) is a function of x alone, and ¢ is a function of  alone. On
its face, this is an absurd restriction, and we cannot hope to get more than a tiny

It is tiresome to keep saying “potential emergy function,” so most people just call V' the
“potential,” even though this invites occasional confusion with electric potential, which is actually
potential energy per unit charge.
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Section 2.1: Stationary States 25

subset of all solutions in this way. But hang on, because the solutions we do obtain
turn out Lo be of great interest. Moreover (as is typically the case with separation
of variables) we will be able at the end to patch together the separable solutions
in such a way as to construct the most general solution.

For separable solutions we have

oV dp PV d*y
ar T dr’ axr dx?

@

(ordinary derivatives, now), and the Schriodinger equation reads

mZ dyr
2m dx?

—dg
i — = Vv ;
i yffdf @+ Virg

Or. dividing through by ¥¢:

2 2
plde_ R 1dy -
@ dt 2m Y dx*

Now, the left side is a function of 7 alone, and the right side is a function of
x alone.? The only way this can possibly be true is if both sides are in fact
constant —otherwise, by varying 7, [ could change the left side without touching
the right side, and the two would no longer be equal. (That’s a subtle but crucial
argument, so if it’s new to you, be sure to pause and think it through.) For reasons
that will appear in a moment, we shall call the separation constant E. Then

Hi92 _ o
@ dt
ar d ‘B
w I
o S, 24
2 n? [2.4]
and
1 d%y
—e——— . Vi E,
2m i dx?
ar
"2 &%y
———— + Vi =Ey. 2.5
2m dx? ¥ v e

Separation of variables has turned a partial differential equation into two ordi-
nary differential equations (Equations 2.4 and 2.5). The first of these (Equation 2.4)

2Note that this would nof be true if V were a function of ¢ as well as x.




26

Chapter 2

Time-Independent Schriidinger Equation

is easy to solve (just multiply through by dt and integrate); the general solution is
Cexp(—i Et /), but we might as well absorb the constant C into ¥ (since the quantity
of interest is the product r¢). Then

o(t) = e TEVR, [2.6]

The second (Equation 2.5) is called the time-independent Schridinger equation;
we can go no further with it until the potential V (x) is specified.

The rest of this chapter will be devoted to solving the time-independent
Schrisdinger equation, for a variety of simple potentials. But before T get to
that you have every right to ask: What's so greai about separable solutions?
After all, most solutions to the (time dependent) Schrédinger equation do not
take the form ¥ (x)e@(r). T offer three answers—two of them physical, and one
mathematical:

1. They are stationary states. Although the wave function itself,

W(x, 1) = yx)e EVR, [2.7]
does (obviously) depend on t, the probability density,
(W (x, ) = O = e E Ry e ER = 1y ()2, [2.8]

does nor—the time-dependence cancels out.® The same thing happens in calculat-
ing the expectation value of any dynamical variable; Equation 1.36 reduces to

1 dx

(Qx, p)) =f¢r*Q (x 7I)1;’ia’x. [2.9]

v ,
Every expectation value is constant in time; we might as well drop the factor ¢(r)
altogether, and simply use ¥ in place of W. (Indeed, it is common to refer to ¥ as
“the wave function,” bul this is sloppy language that can be dangerous, and it is
important to remember that the rrue wave function always carries that exponential
time-dependent factor.) In particular, (x) is constant, and hence (Equation 1.33)
{p) = 0. Nothing ever happens in a stationary slate.
2. They are states of definite total energy. In classical mechanics, the total
energy (kinetic plus potential) is called the Hamiltonian:

2
H(x, p)= % + Vx). [2.10]

3For normalizable solutions, E must be real (sec Problem 2.1(a)).
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The corresponding Hamiltonian operator, obtained by the canonical substitution
p — (i/i)(8/dx), is therefore*

2 42
h-_m9o V(x). [2.11
2m dx? i 2H]

Thus the time-independent Schrodinger equation (Equation 2.5) can be written

H = EV, [2.12]
and the expectation value of the total energy is
(H) = f UrHY dx = Ef W) dx = E [ |W|?dx = E. [2.13]
(Notice that the normalization of W entails the normalization of 1r.) Moreover,
02 = H(HW) = H(EY) = E(HY) = E*y,
and hence
(H?) = f W H> Y dx = Ezf | |>dx = E°.
So the variance of H is
o = (HY) — (HY =E*~F*=0. [2.14]

But remember, if & = 0, then every member of the sample must share the same
value (the distribution has zero spread). Conclusion: A separable solution has the
property that every measurement of the total energy is certain to return the value
E. (That’s why I chose that letter for the separation constant.)

3. The general solution is a linear combination of separable solutions. As
we're about to discover, the time-independent Schridinger equation (Equation 2.5)
yields an infinite collection of solutions (Y1(x), ¥a(x), ¥3(x),...). each with
its associated value of the separation constant (Ey, Ez, E3....); thus there is a
different wave function for each allowed energy:

Wi (x, 0) = Y1 )e B Wy (x, 1) = Yo (x)eT BT

Now (as you can easily check for yourself) the (time-dependent) Schridinger
equation (Equation 2.1) has the property that any linear combination” of solutions

4Whenever confusion might arise, I'll put a “hat” () on the operator, to distinguish it from the
dynamical variable it represents.

5 A linear combination of the functions f(z), f>(z), ... is an expression of the form
f@=cfild+eafor@d)+- -,

where ¢q, ¢, ... are any (complex) constants.
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2 Time-Independent

is itself a solution. Once we have found the separable solutions, then, we can

immediately construct a much more general solutioil‘ of the form é_
w .
Wir ) =Y enthu(x)e I 2.15]
n=l1

It so happens that every solution to the (time-dependent) Schridinger equation

can be written in

(cy, €2, ---)s0as o fit the initial conditions for the problem at hand. You’'ll see
in the following sections how a1l this works out in practice, and in Chapter 3 we’ll
put it into more elegant language, but the main point is this: Once you've solved |
the time-independent Schrédinger equation, you're cssentially done; getting from 4
there to the general solution of the time-dependent Schrodinger equation is, in
principle, simple and straightforward.

A lot has happened in the last four pages, so let me recapitulate, from a
somewhat different perspective. Here's the generic problem: You're given a (time-
independent) potential V(x), and the starting wave function W (x, 0); your job is
to find the wave function, W (x, 1), for any subsequent time 7. To do this you must
solve the (time-dependent) Schrodinger equation (Equation 2.1). The strategy® is
first to solve the time-independent Schrodinger equation (Equation 2.5); this yields,
in general, an infinite set of solutions (W1 (x), ¥a(x), Y3 (x),...), each with its own

associated energy

linear combination of these solutions:

the miracle is that you can always match the specified initial state by appropriate
choice of the constants ¢, €2, €3y .- - To construct W(x, #) you simply tack onto
each term its characteristic time dependence, exp(—iEt/h):

Wi, =Y catrn(@e B =3 enla(x, - | 217

n= =1 i

The separable solutions themselves, ~
Ui(x, 1) = Yalr)e T EtR, [2.18]

80ccasionally

you can solve the time-dependent Schriddinger equation without recourse (o seg- -
aration of variables—see, for instance. Problems 2.49 and 2.50. But such cases are extremely rare. 4
<

Sebradinger Equation

this form—it is simply a matter of finding the right constants

(Ei, E2. E3,--2)- To fit W(x,0) you write down the general

Wix,0) = ch Yy (x): [2.16]
3 n=1 %
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Section 2.1: Stationary States 29

are stationary states, in the sense that all probabilities and expectation values are
independent of time, but this property is emphatically nor shared by the general
solution (Equation 2.17); the energies are different, for different stationary states,
and the exponentials do not cancel, when you calculate |&|*.

Example 2.1 Suppose a particle starts out in a linear combination of just rwo
stationary states:

W(x,0) = c1¥ (x) + caya ().

(To keep things simple T'll assume that the constants ¢, and the states yr, (x) are
real.) What is the wave function W (x, 1) at subsequent times? Find the probability
density, and describe its motion.

Solution: The first part is easy:
W(x, 1) = ey (e B 4 cayy (x)eTEE,
where E; and E are the energies associated with i and 1. Tt follows that

WG, OF = (1™ 4 eapne By e B 4 cpypeiERY

= G{UT + Y3 + 2c1c0y v cos[(Ey — Ey)e/Al.

(I used Euler’s formula, expif = cosf +isin@, to simplify the result.) Evidently
the probability density oscillates sinusoidally, at an angular frequency (E; — E1)/h;
this is certainly not a stationary state. Bul notice that it took a linear combination
of states (with different energies) to produce motion.”

#Problem 2.1 Prove the following three theorems:

(a) For normalizable solutions, the separation constant E must be real. Hint:
Write £ (in Equation 2.7) as Ey + iI" (with Ey and T real), and show that
if Equation 1.20 is to hold for all t, T" must be zero.

(b) The time-independent wave function 1 (x) can always be taken to be real
(unlike W(x, 1), which is necessarily complex). This doesn’t mean that every
solution to the time-independent Schrodinger equation is real; what it says
is that if you’ve got one that is nor, it can always be expressed as a linear
combination of solutions (with the same energy) that are. So you might as
well stick to yr’s that are real. Hint: If (x) satisfies Equation 2.5, for a
given E, so too does ifs complex conjugate, and hence also the real linear
combinations (Y + ") and i (y — ¢¥*).

"This is nicely illustrated by an applet at the Web site httpz//thorin.adne com/~topguark/
quantum/deepwellmain.himl.
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(¢) If V(x) is an even function (that is, V(—x) = V(x)) then v (x) can always
be taken to be cither even or odd. Hinr: If vr(x) satisfies Equation 2.5, for
a given E, so too does ¥r(—x), and hence also the even and odd lincar
combinations vr(x) T ¥r(—x).

«Problem 2.2 Show that E must exceed the minimum value of V(x). for every
normalizable solution to the time-independent Schrodinger equation. What is the
classical analog to this statement? Hinz: Rewrite Equation 2.5 in the form

a2y 2m .
T R —1[\;“?(_XJ == _E‘,}i"f,
dx= h*

if E < V. then ¥ and its second derivative always have the same sign—argue
that such a function cannot be normalized.

2.2 THE INFINITE SQUARE WELL

Suppose
0, if0=x=a,

2
oo, otherwise [2.19]

V(x) :{

(Figure 2.1). A particle in this potential is completely free, except at the two ends
(x = 0 and x = a), where an infinite force prevents it from escaping. A classical
model would be a cart on a frictionless horizontal air track, with perfectly elastic
bumpers—it just keeps bouncing back and forth forever. (This potential is artifi-
cial, of course, but I urge you to treat it with respect. Despite its simplicity—or
rather, precisely because of its simplicity—it serves as a wonderfully accessi-
ble test case for all the fancy machinery that comes later. We'll refer back to it
frequently.)

= - > FIGURE 2.1: The infinite square well poten-
- X tal (Equation 2.19).
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Section 2.2: The Infinite Square Well 31

Outside the well, ¥(x) = 0 (the probability of finding the particle there is
zero). Inside the well, where V = 0, the time-independent Schrédinger equation
(Equation 2.5) reads

R* d*yr i (2.20]
2m dx? e .
o d* V2mE
5 2mE
5 f = —k*yr, where k= ; ; [2.21]
X

(By writing it in this way, I have tacitly assumed that £ > 0; we know from
Problem 2.2 that £ = 0 won’t work.) Equation 2.21 is the classical simple har-
monic oscillator equation; the general solution is

Ur{x) = Asinkx + B coskx, [2.22]

where A and B are arbitrary constants. Typically, these constants are fixed by the
boundary conditions of the problem. What are the appropriate boundary con-
ditions for v (x)? Ordinarily, both ¥ and dvr/dx are continuous, but where the
potential goes to infinity only the first of these applies. (I'll prove these boundary
conditions, and account for the exception when V = oo, in Section 2.5; for now L
hope you will trust me.)

Continuity of ¥ (x) requires that

Ur(0) =y (a) =0, [2.23]

50 as to join onto the solution outside the well. What does this tell us about A and
B7? Well,

¥ (0) = Asin0+4 BcosQ = B,

so B =0, and hence
P(x) = Asinkx. : [2.24]

Then ¥ (a) = Asinka, so either A = 0 (in which case we’re left with the triv-
ial— non-normalizable—solution ¥ (x) = 0), or else sinka = 0, which means
that

ka=0, Tm, 27, *3m, ... [2.25]

But k = 0 is no good (again, that would imply ¥ (x) = 0), and the negative
solutions give nothing new, since sin(—f) = —sin(f) and we can absorb the
minus sign into A. So the distinct solutions are

ni

kn=—, withn=12,3, ... [2.26]
a
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wi(x) 4 Wa(x) A - yal(x)

FIGURE 2.2: Thefirst three stationary states of the infinite square well (Equation 2.28).

Curiously, the boundary condition at x = a does not determine the constant
A. but rather the constant k, and hence the possible values of E:

thkg nixlht

Eyp= [2.27]

2m  2ma?

In radical contrast to the classical case, a quantum particle in the infinite square
well cannot have just any old energy—it has to be one of these special allowed
values.? To find A, we normalize Vr:

R S 20 2_2
f [AP sin“(kx)dx = |[A]"= =1, so [A]"=—.
0 2 &

This only determines the magnitude of A, but it is simplest to pick the positive real
root: A = +/2/a (the phasc of A carries no physical significance anyway). Inside
the well, then, the solutions are

&
7

Va(x) = \E sin (”—;ﬂ) . [2.28]

As promised, the time-independent Schrodinger equation has delivered an
infinite set of solutions (one for each positive integer n). The first few of these are
plotted in Figure 2.2. They look just like the standing waves on a string of length a:
¥, which carries the lowest epergy, is called the ground state, the others, whose
energies increase in proportion to n2, are called excited states. As a collection, the
functions ¥, (x) have some interesting and important properties:

1. They are alternately even and odd, with respect to the center of the well:
Yry is even, Y is odd, 3 is even, and so on.?

BNotice that the quantization of energy emerged as a rather technical consequence of the bound-
ary conditions on solutions to the lime-indepgndent Schridinger equation.

9To make this symmetry more apparent, some authors center the well at the origin (running it
from —a to +a). The even functions are then cosines, and the odd ones are sines. See Problem 2.36.
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Section 2.2: The Infinite Square Well 33

2. As you go up in energy, each successive state has one more node (zero-
crossing): ¥, has none (the end points don’t count), V> has one, 13 has two, and
SO On.

3. They are mutually orthogonal, in the sense that

f Y () Y (x) dx =0, [2.29]

whenever m = n. Proof:

f Y () Uy (x) dx = g foa sin (r—nix) sin (?x) dx

a (4]

1 4 m—n m-+n
= — cos X | —COS Tx || dx
aJy a ; a
1 o (m—=n 1 [ m+n
= sin TX | — ——sin TX
(m —n)mw a (m+ n)m a

l {sin{(m —n)m] 3 sin[(m + n):rr]} -

T (m —n) (m+n)

a

0

Note that this argument does not work if m = n. (Can you spot the point at which
it fails?) In that case normalization tells us that the integral is 1. In fact, we can
combine orthogonality and normalization into a single statement: 10

f Ym (x)*wn (x)dx = Spns [2.30]

where 8, (the so-called Kronecker delta) is defined in the usual way,

0, ifm #n;
(Smn—[ 1, ifm=n. . [2.31]

We say that the ¥’s are orthonormal.
4, They are complete, in the sense that any other function, f(x), can be
expressed as a linear combination of them:

00 7> ‘ ;
Fy = ; Cntn(x) = \g 2 ¢, $in (”—}x) ’ [2.32]

L01p this case the s are real. so the * mfﬁ;m is unnecessary, but for future purposes it’s a good
idea to gel in the habit of putting it there.
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I’'m not about to prove the completeness of the functions sin (n7x /a), but if you’ve
studied advanced calculus you will recognize that Equation 2.32 is nothing but the
Fourier series for f(x), and the fact that “any” function can be expanded in this
way is sometimes called Dirichlet’s theorem.!!

The coefficients ¢, can be evaluated—for a given f(x)—by a method I call
Fourier’s trick, which beautifully exploits the orthonormality of {i,}: Multiply
both sides of Equation 2.32 by 1, (x)*, and integrate.

f Y (x)*f(x) dx = Z Cn j ‘;ffm (x)*%(l) d=— chamn = Cm- 1233]
n=1 n=1

(Notice how the Kronecker delta kills every term in the sum except the one for
which n = m.) Thus the nth coefficient in the expansion of f(x) is!?

Cn = f %(x)*f(x) dx. [2.34]

These four properties are extremely powerful, and they are not peculiar to the
infinite square well. The first is true whenever the potential itself is a symmetric
function; the second is universal, regardless of the shape of the potential.'® Orthog-
onality is also quite general—TI'll show you the proof in Chapter 3. Completeness
holds for all the potentials you are likely to encounter, but the proofs tend to be
nasty and laborious; I'm afraid most physicists simply assume completeness, and
hope for the best.

The stationary states (Equation % 18) of the infinite square well are evidently

#

2 o3
W (x, 1) = /jsil1 (Ex) om0/ 2ma)t. [2.35]

a v a
#

I claimed (Equation 2.17) that the most general solution to the (time-dependent)
Schradinger equation is a lincar combination of stationary states:

o0
2 - I
W 1) = ¢ny/ = sin (Ex) 1T 2ma)t. [2.36]
a o

n=1

“Sce, for example, Mary Boas, Mathematical Methods in the Physical Sciences, 2d ed. (New
York: John Wiley, 1983), p. 313; f(x) can even have a finite number of finite discontinuities.

21 doesn’t matter whether you use m or # as the “dummy index™ here (as long as you are
consistent on the two sides of the equation, of course); wharever letter you use, it just stands for “any
positive integer.”

”See, for example, John L. Powell and Bemnd Crasemann, Quanfum Mechanics (Addison-
Wesley, Reading, MA. 1961), p. 126.
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Section 2.2: The Infinite Square Well 35

(If you doubt that this is a solution, by all means check it!) It remains only for
me to demonstrate that I can fit any prescribed initial wave function, ¥ (x, 0), by
appropriate choice of the coefficients ¢:

o0

W(r,0) =) cntn().

n=1

The completeness of the ¢’s (confirmed in this case by Dirichlet’s theorem) guar-
antees that T can always express W(x,0) in this way, and their orthonormality
licenses the use of Fourier’s trick to determine the actual coefficients:

2 fa
TR f sin (sz) W(x,0) dx. [2.37]
a o a

That does it: Given the initial wave function, ¥(x, 0), we first compute the
expansion coefficients c,,, using Equation 2.37, and then plug these into Equation 2.36
to obtain W (x, f). Armed with the wave function, we are in a position to compute any
dynamical quantities of interest, using the procedures in Chapter 1. And this same
ritual applies to any potential—the only things that change are the functional form
of the ¥’s and the equation for the allowed energies.

Example 2.2 A particle in the infinite square well has the initial wave function
Y(x,0) = Ax(a—x), (0=x<a), £

for some constant A (sec Figure 2.3). Outside the well, of course, ¥ = 0. Find
W(x,1).

A ¥(x, 0)

a X

FIGURE 2.3: The starting wave function in Ex;.lrnple 2.2.
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Solution: First we need to determine A, by normalizing W(x, 0):

a a 5
1=f W (x,0)>dx = 1A|2f x*a—x)dx = IARZ,
0 0 30

S0

A=.—.
a’

The nth coefficient is (Equation 2.37)

L R (.1 30 _
cﬂ:\/;]; sm(?,\)JEx(a—x)dx

. 215 a  nm & g B
e [aj; xsin (?x) dx —L x sm(—a—.x) dx]

2415 as: _ /nw ax ni =
=2 al(&) sin () eos (]|

a\2_ . /nm o\ (nmx/a)® —2 nw y
— [2(;};) x.«,m( a x) “—-—(rm/aﬁ cos( 5 l)] 0}
3 2 _
= 2«/31_5 [—a— cos(nm) + a3M cos(nm) +a3—2— cos(O)il
a nI (nm)3 ; (nm)? .

= 4—J1_§ [cos(0) — cos(nm)].

(nm) 7

if n 18 even,

0?
g [ 8/15/(nm)?, if n is’odd.

Thus (Equation 2.36):

30 (2 ? 1 . (nm —in2n At [2ma®
W(x, 1) = —a-(;) Z n—Sam(?x)e .

Loosely speaking, ¢, tells you the “amount of 1, that is contained in W.”
Some people like to say that |en|? is the “probability of finding the particle in the
nth stationary state,” but this is bad language; the particle is in the state W, not
W, and, anyhow, in the laboratory you don’t “find a particle to be in a particular
state” —you measure SOmMe observable, and what you get is a number. As we’ll
see in Chapter 3, what lca|? tells you is the probability that a measurement of the
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Section 2.2: The Infinite Square Well 37

energy would yield the value Ey, (a competent measurement will always return one
of the “allowed” values—hence the name—and |c, |2 is the probability of getting
the particular value Ey).

Of course, the sum of these probabilities should be 1,

oo

Y el =1. [2.38]
n=1

Indeed, this follows from the normalization of W (the c,’s are independent of time,
so I'm going to do the proof for ¢ = 0; if this bothers you, you can easily generalize
the argument to arbitrary £).

1= f (W (x, 0 dx = f (Zcmwm(x)) Zcmm) dx
=1

m=1
oo 0O
= 2> chen [ Ym0 v dx
m=1 n=1
oo 00 o0
® 2
=2 cintabun =) _lel”
n=1m=1 n=1

(Again, the Kronecker delta picks out the term m =n in the summation over m1.)
Moreover, the expectation value of the energy must be

(H) = Z [¢n lem [2.39]

n=1

and this too can be checked directly: The time-independent Schrodinger equation

(Equation 2.12) says
Hyr, = Epvry, : [2.40]

50

(H) = f WFHW dx = j (Z cmwm)* H (Z cm) dx
_ Y X et [ Vitnds = il B

Notice that the probability of getting a particular energy is independent of time, and
so, a fortiori, is the expectation value of H. This is a manifestation of conservation
of energy in quantum mechanics.
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| =

' Example 2.3 In Example 2.2 the starting wave function (Figure 2.3) closely re- E
sembles the ground state vy (Figure 2.2). This suggests that |c1]? should dominate,
and in fact

73

2
815
ler|> = ( ‘/_) = (.998555....

The rest of the coefficients make up the difference:'* E

e Vi3 &1
;10}!12-_—( 23 ) Z n_GZ]

a=1,3.5;.:

The expectation value of the energy, in this example, is

3 ;
i (8«/15) n’rh? 4804 i 1 sk

(By=" 3"

3 n3n3 2ma®  mwtma? ot ma?’ -~
n=1,3.5,... n=1.3.5..
P
As one might expect, it is very close to E; = w2h? /2ma*—slightly larger, because p
of the admixture of excited states. th
St
Problem 2.3 Show that there is no acceptable solution to the (time-independent)
Schridinger equation for the infinite square well with £ =0 or £ < 0. (This is a
special case of the general theorem in Problem 2.2, but this time do it by explicitly
solving the Schrdinger equation, and showing that you cannot meet the boundary W
conditions.) Ie
@
¥Problem 2.4 Calculate (x), (x*), (p), (p*), ox, and o, for the nth stationary state P
of the infinite square well. Check that the uncertainty principle is satisfied. Which
- stale comes closest to the uncertainty limit? #P;
*Problem 2.5 A particle in the infinite square well has as its initial wave function
an even mixture of the first two stationary states:
W(x,0) = Aly(x) + ¥2(0)].
|
*You can look up the series (
Le$, @ o a3 —
1636 " 5 ~ 960
as
and do
Lt at cfl
Eratat T% o
3 s 9 o
Pr

in math tables, under “Sums of Reciprocal Powers™ or “Riemann Zeta Function.”




1) re-
inate,

]

catise

ident)
S 1S a
licitly
ndary

| state
Vhich

}ction
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(a) Normalize W(x,0). (That is, find A. This is very easy, if you exploit the
orthonormality of 1r; and 2. Recall that, having normalized W at t = 0,
you can rest assured that it stays normalized—if you doubt this, check it
explicitly after doing part (b).)

(b) Find W(x,7) and |¥(x,7)[*. Express the latter as a sinusoidal function of
time, as in Example 2.1. To simplify the result, let @ = 7%k /2ma’.

(c) Compute (x). Notice that it oscillates in time. What is the angular frequency
of the oscillation? What is the amplitude of the oscillation? (If your amplitude
is greater than a/2, go directly to jail.)

(d) Compute {p}). (As Peter Lorre would say, “Do it ze kveek vay, Johnny!”)

(e) If you measured the energy of this particle, what values might you get, and
what is the probability of getting each of them? Find the expectation value
of H. How does it compare with E; and E>?

Problem 2.6 Although the overall phase constant of the wave function is of no
physical significance (it cancels out whenever you calculate a measurable quantity),
the relative phase of the coefficients in Equation 2.17 does matter. For example,
suppose we change the relative phase of i and v in Problem 2.5:

W(x,0) = AlY1(x) + €92 (0)],
where ¢ is some constant. Find W(x, 1), |W¥(x, r)|2, and (x), and compare your

results with what you got before. Study the special cases ¢ = n/2 and ¢ = 7.
(For a graphical exploration of this problem see the applet in footnote 7.)

#Problem 2.7 A particle in the infinite square well has the initial wave function'’

Ax, 0=

x /2,
Ala—x), af2 <x

V(x,0) = 5

A
A8

(a) Sketch W(x, 0), and determine the constant A.

(b) Find U(x, 7).

D There is no restriction in principle on the shape of the starting wave [unction, as long
as it is normalizable. In particular, ¥(x,0) nced not have a continuous derivative—in fact, it
doesn’t even have to be a confinuous function. However, if you try to calculate (H) using
f Wix, *HW(x, 0)dx in such a case, you may encounter technical difficulties, because the second
derivative of W(x, 0) is ill-defined. It works in Problem 2.9 because the discontinuities occur at the end
points, where the wave function is zero anyway. In Problem 2.48 you’ll see how 1o manage cases like
Problem 2.7.
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(c) What is the probability that a measurement of the énergy would yield the
value E1?

(d) Find the expectation value of the energy.

Problem 2.8 A particle of mass m in the infinite square well (of width @) starts
out in the left half of the well, and is (at 1 = 0) equally likely to be found at any
point in that region.

(a) What is its initial wave function, ¥(x,0)? (Assume it is real. Don’t forget
to normalize it.)

(b) What is the probability that a measurement of the energy would yield the
value 72h*/2ma*?

Problem 2.9 For the wave function in Example 2.2, find the expectation value of
H, at time ¢ = 0, the “old fashioned™ way:

(H) :fllJ(x,Oj*I;'\ll(x,O)dx.

Compare the result obtained in Example 2.3, using Equation 2.39. Note: because
(H) is independent of time, there is no loss of generality in using £ = 0.

2.3 THE HARMONIC OSCILLATOR

7
The paradigm for a classical harmonic oscillator 1s a mass m attached to a spring

of force constant k. The motion is governed by Hooke’s law,

i . d*x
= =KX = M —

dr?
(ignoring friction), and the solution is

x(t) = Asin(wt) + B cos(wt),

w= .\E [2.41]

is the (angular) frequency of oscillation. The potential energy is

where

V(x) = ;k'xz; [2.42]

its graph is a parabola.
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V(x) 4

el

FIGURE 2.4: Parabolic approximation (dashed curve) to an arbitrary potential, in
the neighborhood of a local minimum.

Of course, there’s no such thing as a perfect harmonic oscillator—if you
stretch it too far the spring is going to break, and typically Hooke’s law fails
long before that point is reached. But practically any potential is approximately
parabolic, in the neighborhood of a local minimum (Figure 2.4). Formally, if we
expand V(x) in a Taylor series about the minimum:

1
V(x) = V(x0) + V' (x0)(x — x0) + SV (o) (x = x0) 4+

subtract V(xg) (you can add a constant to V (x) with impunity, since that doesn’t
change the force), recognize that V' (xp) = 0 (since x¢ is @ minimum), and drop the
higher-order terms (which are negligible as long as (x — xp) stays small), we get

ml 1" 2
Vix) = EV (xp)(x — x0)*,

which describes simple harmonic oscillation (about the point xp), with an effective
spring constant k = V" (x0).!® That's why the simple harmonic oscillator is so
important: Virtually any oscillatory motion is approximately simple harmonic, as
long as the amplitude is small.

The quantum problem is to solve the Schrédinger equation for the potential

Vi) %mwzxz [2.43]

(it is customary to eliminate the spring constant in favor of the classical frequency,
using Equation 2.41). As we have seen, it suffices to solve the time-independent
Schridinger equation:

— + —mw x?‘y'f = Eqr. [2.44]

16Note that V" (xg) = 0, since by assumption Xg is a minimum. Only in the rare case V" (xg) =0
is the oscillation not even approximately simple harmonic.

v e e SR T -:;-,.rmradl
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In the literature you will find two entirely different approaches to this problem.
The first is a straightforward “brute force” solution to the differential equation,
using the power series method; it has the virtue that the same strategy can be
applied to many other potentials (in fact, we’ll use it in Chapter 4 to treat the
Coulomb potential). The second is a diabolically clever algebraic technique, using
so-called ladder operators. I'll show you the algebraic method first, because it is
quicker and simpler (and a lot more fun);!” if you want to skip the power series
method for now, that’s fine, but you should certainly plan to study it at some
stage.

2.3.1 Algebraic Method

To begin with, let’s rewrite Equation 2.44 in a more suggestive form:

i[p2 + (mwx) Yy = EV, [2.45]
2m

where p = (fi/i)d/dx is, of course, the momentum operator. The basic idea is to
factor the Hamiltonian,

1
H = —[p* + (mowx)?1. [2.46]
2m
If these were numbers, it would be easy:
Dol .
u”+v° = (iu+ v)(—iu+v).

Here, however, it’s not quite so simple, because p and x are operators, and oper-

ators do not, in general, commute (xp is not the same as px). Still, this does
- = S~ #

motivate us to examine the quantities/

. ﬁ%lim—‘; (Fip + mwx) [2.47]

(the factor in front is just there to make the final results look nicer).
Well, what is the product a_ay?

1
a_ar = —(ip +mwx)(—ip +mwx)
2hmw

1
== —-——{pz + (.'nwx)2 —imw(xp — px)].
2hmw

ITe°11 encounter some of the same strategies in the theory of angular momentum (Chapter 4),
and the technique generalizes to a broad class of potentials in super-symmetric quantum mechanics
{see, for example, Richard W. Robinett, Quantum Mechanics, (Oxford U.P., New York, 1997), Section
14.4).
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Section 2.3: The Harmonic Oscillator 43

As anticipated, there’s an extra term, involving (xp — px). We call this the com-
mutator of x and p; it is a measure of how badly they fail to commute. In general,
the commutator of operators A and B (written with square brackets) is

[A, Bl= AB — BA. [2.48]

In this notation,

a-ay = [P* + (meox)] = —[x, p]. [2.49]

2hmw

We need to figure out the commutator of x and p. Warning: Operators are
notoriously slippery to work with in the abstract, and you are bound to make
mistakes unless you give them a “test function,” f(x), to act on. At the end you
can throw away the test function, and you’ll be left with an equation involving the
operators alone. In the present case we have:

| .Aad hd _h( df af e
[x, plf(x) = [x;E;(f) = ?E(xf)] = (xa T f) =ihf(x).
[2.50]
Dropping the test function, which has served its purpose,

[x, p] =iA. [2.51]

This lovely and ubiquitous result is known as the canonical commutation rela-
tion.!®
With this, Equation 2.49 becomes

1 1 :
a-ap=-—H+=, [2.52]
or
H = ho (a_a+ - é) . [2.53]

Evidently the Hamiltonian does nor factor perfectly—there’s that extra —1/2 on the
right. Notice that the ordering of a and a_ is important here; the'same argument,
with @y on the left, yields

1 1
a-=—H ——. 2.54
& hw 2 [ ]
In particular,
[a_,as] = 1. [2.55]

Bna deep sense all of the mysteries of quantum mechanics can be traced to the fact that position
and momentum do not commute. Indeed, some authors take the canonical commutation relation as an
axiom of the theory, and use it to derive p = (h/i)d/dx.
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So the Hamiltonian can equally well be written
1 g
H=hw|aya- + 5] [2.56]

In terms of a1, then, the Schrédinger equation'® for the harmonic oscillator takes
the form

hw (aiaq-_- + %) v =Ey [2.57]

(in equations like this you read the upper signs all the way across, or else the lower
signs).

Now, here comes the crucial step: I claim that if ¥ satisfies the Schrddinger
equation with energy E, (that is: Hy = Evr), then a safisfies the Schridinger
equation with energy (E + hw): H(a+y¥) = (E + ho)(a+¥). Proof:

1 1
H(a y) = hw (a+a_ -+ 5) (apy) = hw (a+a_a+ + —izu,) W

1 1
= hway (a_a+ + 5) W =ay I:hw (a+a_ + 1+ i) 1#]

— 0 (H + ho)¥ = a (E + ho)t = (E + ho)(ay).

(I used Equation 2.55 to replace a_ay by aja_ + 1, in the second line. Notice
that whereas the ordering of ar and a_ does matter, the ordering of a4+ and
any constants—such as i, w, and E—does nor; an operator commutes with any
constant.) »

By the same token, a_ v is a/ solution with energy (£ — iiw):

H(a_) = ho (a_a+ = %) ta_ ) = hwa_ (a+a_ s %) "

= [ﬁm (a_a..i. i %) 1,:‘[] =a_(H — ho)y =a_(E — ho)r

=(E — hw)(a_1r).

Here, then, is a wonderful machine for generating new solutions, with higher and
lower energies—if we could just find one solution, to get started! We call a+
ladder operators, because they allow us to climb up and down in energy; a4 is
the raising operator, and a_ the lowering operator. The “ladder” of states is
illustrated in Figure 2.5.

197'm getting tired of writing “time-independent Schridinger equation,” so when it's clear from
the context which one I mean, I'll just call it the “Schridinger equation.”
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Section 2.3: The Harmonic Oscillator 45

FIGURE 2.5: The “ladder” of states for the harmonic oscillator.

But wait! What if T apply the lowering operator repeatedly? Eventually I'm
going to reach a state with energy less than zero, which (according to the general
theorem in Problem 2.2) does not exist! At some point the machine must fail.
How can that happen? We know that a_1 is a new solution to the Schrodinger
equation, but there is no guarantee that it will be normalizable—it might be zero,
or its square-integral might be infinite. In practice it is the former: There occurs a
“Jowest rung” (call it ¥) such that

a_g = 0. [2.58]

We can use this to determine ¥g(x):
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or
diry mw
— = ——xn.
dx i vo
This differential equation is easy to solve:
dyrg 10] f mo -
avo _ T [ xdx = Inyp = ———x" + constant,
o 7 Vo m T '
SO

Yotx) = A ET

We might as well normalize it right away:

e : 5 |k
1= lAiZf e—!rlr:dxz,f’.ﬁ dx = !A12 =y
—00 ma

so A? = /mw/7h, and hence

o 1/4 ma 2 |
Yo(x) = (;—) e W [2.59]

To determine the energy of this state we plug it into the Schridinger equation (in
the form of Equation 2.57). hw(ara— + 1/2)¥0 = Eovo, and exploit the fact that
a_g =0

1
Eo = 5ho. [2.60]

With our foot now securely plante&’f)n the bottom rung (the ground state of the
quantum oscillator), we simply apply the raising operator (repeatedly) to generate
.the excited states, 20 increasing the energy by Aw with each step:

U () = Aplap) o(x), with E,= (n + %) haw, [2.61]

. "':'_;‘ where A, is the normalization constant. By applying the raising operator (repeat-
L edly) to Y, then, we can (in principle) construct all?! the stationary states of

207y the case of the harmonic oscillator it is customary, for some reason, to depart from the usual

practice, and number the

states starting with n = 0, instead of n = 1. Obviously, the lower limit on the

sum in a formula such as Equatio

21 Note that we obtain all the (normalizable) solutions by this procedure. For if there were some

n 2.17 should be altered accordingly.

ather solution, we could generate from it a second ladder, by

repeated application of the raising and

lowering operators. But the bottom rung of this-new ladder would have to salisfy Equation 2.58, and
since that leads inexorably to Equation 2.59, the bottom rungs would be the same, and hence the two
ladders would in fact be identical.




| &

I the harmonic oscillator. Meanwhile, without ever doing that explicitly, we have
' determined the allowed energies.
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Example 2.4 Find the first excited state of the harmonic oscillator.

Solution: Using Equation 2.61,

maw 14 _mw 2
e 3

Ay d
Y (x) = Arapdg = m (—ﬁa -+ mwx) (Tm

A mao 74 mew &
= — xe
"\ 7n ) h

[2.62]

X

.
= 3

We can normalize it “by hand™:

L me [ 2mw 0o _me. 2 5
:. f1w1|2dx=!A112 o f e T dx = AP,
| wh \ & s

s0, as it happens, A; = L.

I wouldn’t want to calculate ¥sq this way (applying the raising operator fifty
times!), but never mind: In principle Equation 2.61 does the job—except for the
normalization.

b You can even get the normalization algebraically, but it takes some fancy
footwork, so watch closely. We know that a4 W, is proportional to Yn+1,

Arvn = cp¥ns1,  a- Un = dpn¥n—1 [2.63]

but what are the proportionality factors, ¢, and d,? First note that for “any”22
functions f(x) and g(x),

f f*(aig)dxzf (axf)*gdx. [2.64]

i (In the language of linear algebra, ax is the hermitian conjugate ofaq.)
i Proof:

" w0 1 % d
] " dx = [ "\ Fh—+ dx,
[ rraseem g [ (g 4o s

2200t course, the integrals must exiss, and this means that F(x) and g(x) must go to zero at

Too.
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and integration by parts takes [ f*(dg/dx)dx to — [(df/dx)*g dx (the boundary
terms vanish, for the reason indicated in footnote 22}, so

o0 " 1 o0 d # (o8]
[ raspa=—— / [(iﬁaerwx).f] gdr= [ (azf)gds.

QED
In particular,

o0 o0
[ @swnr@stas= [ @z vnd
—00 =00
But (invoking Equations 2.57 and 2.61)

a1V =Y, G_apdn = (n+ D, [2.65]

S0

f (a+wn)*(a+wn)dx=]cn12f [Ynt1lPdx = (n+ 1)/ ¥ |* dx,

oo 2 fo.] oo
f (@—VYm)*(a—V) dx = |dy|* f [Yn—1l?dx=n f [¥a | dx.
: = 5

—co o0

But since 1, and ;4| are normalized, it follows that [cn|2 =n+1and |d,1|2 =1,
and hence

atyy =~'n+ l),'k{fn-i‘l: a—ym = \/ﬁ WH—/lJ [2.66]

Thus )

1

1
o ﬁ(a+>2wo..

Yi=aro, Y2=
1
=2 oy (a+)*¥o.

=, 1 3 - _1_ s
V3 \/gaH’fz = —m(ﬁa-) Yo, Ya= \/Zﬂ+‘ff3 S A

and so on. Clearly

l n
Yn = ﬁ(fbr) Yo, [2.67]

which is to say that the normalization factor in Equation 2.61 is A, = 1/ V/n! (in
particular, A; = 1, confirming our result in Example 2.4).
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As in the case of the infinite square well, the stationary states of the harmonic
oscillator are orthogonal:

o0
f %ff; Yy dx = Spn. [2.68]
-0

This can be proved using Equation 2.65, and Equation 2.64 twice—first moving
ay and then moving a_:

f Uk (@ra ) dx =n f Y dx
=f (G~Wm)*(a—¢n)dx:f (a+fi—1ffm)*¢fn dx

| =m.f‘ Yoy dx.
—o0

Unless m = n, then, [ v, dx must be zero. Orthonormality means that we
can again use Fourier’s trick (Equation 2.34) to evaluate the coefficients, when we
expand W(x,0) as a linear combination of stationary states (Equation 2.16), and
len|? is again the probability that a measurement of the energy would yield the
value E;.

Example 2.5 Find the expectation value of the potential energy in the nth state
of the harmonic oscillator.

Solution:
Lk 1 o ® . g
(V)= Emm X )= Emw” Yt X, dx.
—00

There’s a beautiful device for evaluating integrals of this kind (involving powers
of x or p): Use the definition (Equation 2.47) to express x and p in terms of the
raising and lowering operators:

el T el e g [2.69]
2maow 2

In this example we are interested in oy

5 M
i = —— (@) + (@ra) + (a-ap) + @ )?].

2mw

So

Ao

W) =22 [0 [@0? + @) + aan) + @] g
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But (ay)*y, is (apart from normalization) v+, which is orthogonal to 1, and
the same goes for (a_)?,, which is proportional to ¥,_,. So those terms drop
out, and we can use Equation 2.65 to evaluate the remaining two:

hw 1 1
(V)= ?(n+n+ 1)= Eﬁw (rz+§).
As it happens, the expectation value of the potential energy is exactly half the

total (the other half, of course, is kinetic). This is a peculiarity of the harmonic
oscillator, as we’ll see later on.

#Problem 2.10

(a) Construct ¥ (x).
(b) Sketch g, 1y, and V3.

(c) Check the orthogonality of Y, v, and i, by explicit integration. Hint: If
you exploit the even-ness and odd-ness of the functions, there is really only
one integral left to do.

#Problem 2.11

(a) Compute (x), (p), (x?), and (p?), for the states ¥y (Equation 2.59) and
(Equation 2.62), by explicit integration. Comment: In this and other problems
involving the harmonic oscillator it simplifies matters if you introduce the
variable £ = \/mw/hi x and the constant a = (mw/wh)/*.

(b) Check the uncertainty principle é% these states.

(c) Compute (T) (the average kinetic energy) and (V) (the average potential
cnergy) for these states. (No new integration allowed!) Is their sum what you
would expect?

«Problem 2.12 Find (x), (p), (x2), (p?), and (T"), for the nth stationary state of the
harmonic oscillator, using the method of Example 2.5. Check that the uncertainty
principle is satisfied.

Problem 2.13 A particle in the harmonic oscillator potential starts oul in the state
W(x, 0) = AD3o(x) + 491 (x)].

(a) Find A.
(b) Construct W(x, ¢) and |¥(x, 1)]%

AT Y D



nd
Op

he

ic

Iy

1

ns

al
U

ic

B e L

R S

T S
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(c) Find (x) and (p). Don’t get too excited if they oscillate at the classical
frequency; what would it have been had I specified v (x), instead of ¥ (x)?
Check that Ehrenfest’s theorem (Equation 1.38) holds for this wave function.

(d) If you measured the energy of this particle, what values might you get, and
with what probabilities?

Problem 2.14 A particle is in the ground state of the harmonic oscillator with
classical frequency w, when suddenly the spring constant quadruples, so o' = 2w,
without initially changing the wave function (of course, ¥ will now evolve differ-
ently, because the Hamiltonian has changed). What is the probability that a mea-
surement of the energy would still return the value /w/2? What is the probability
of getting Aw? [Answer: 0.943.]

2.3.2 Analytic Method
We return now to the Schrodinger equation for the harmonic oscillator,

Ry 1 55
B BN B e 2.70
e B 12701

and solve it dircctly, by the series method. Things look a little cleaner if we
introduce the dimensionless variable

£ = H%ﬁx; [2.71]

in terms of & the Schrddinger equation reads

Y &y 272]

i , 2.72
where K is the energy, in units of (1/2)Aw:
2E

K=—. [2.73]
hw

i
Our problem is to solve Equation 2.72, and in the process obtain the “allowed”
values of K (and hence of E).
To begin with, note that at very large & (which is to say, at very large x), &2
completely dominates over the constant K, so in this regime

d*y
dg?

which has the approximate solution (check it!)

~ £y, [2.74]

(&) = A7 g Bt [2.75]
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The B term is clearly not normalizable (it blows up as {x| - 00); the physically
acceptable solutions, then, have the asymptotic form

Y& = (e, atlarge &. [2.76]
This suggests that we “peel off” the exponential part,
Y(E) = h©)e 7, [2.77]

in hopes that what remains, A(§), has a simpler functional form than ¥ (§) itself. 2
Differentiating Equation 2.77,

L. A (d_ii = Sh) €—$Zr’2,

dg — \d§
and
d*y d%h ?%_dh 4 (&2 =1k —&2
ol s IO s N e — €
dg? dg? dE :
so the Schrodinger equation (Equation 2.72) becomes
& 2£dh +(K—-1Dh=0 [2.78]
dgr Tdg o '
I propose to look for solutions to Equation 2.78 in the form of power series
in £:24
gl % .
h(E) =ap+ais +aEt +--= Y a;E. [2.79]
j=0

Differentiating the series term by term,

4
dh

— —a +2mE +3mER =
’

i jajEl t,

r

Il
=

s j
and
dZ

h e .
2 =242 Aa 3 AagEt =) (DU +DajaE
j=0

23Note that although we invoked some approximations to morivate Equation 2.77, what fol-
lows is exact. The device of stripping off the asymptotic behavior is the standard first step in
the power series method for solving differential equations—see, for example, Boas (footnote 11),
Chapter 12.

24This is known as the Frobenius method for solving a differential equation. According to
Taylor's theorem; any reasonably well-behaved function can be expressed as a power series, so
Equation 2.79 ordinarily involves no loss of generality. For conditions on the applicability of the
method. see Boas (footnote 11) or George B. Arfken and Hans-Jurgen Weber, Mathematical Methods
for Physicists, 5th ¢d., Academic Press, Orlando (2000, Section 8.5.
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Puiting these into Equation 2.78, we find
w 3
> [G+ DG +2ajia —2ja; + (K - Da;]&7 =0. [2.80]
j=0

It follows (from the uniqueness of power series expansions®) that the coefficient
of each power of & must vanish,

( + DU +2)aj42 ~ 2jaj + (K — 1a; =0,
and hence that .
@Qj+1-K)
G+DG+2) 7

This recursion formula is entirely equivalent to the Schridinger equation.
Starting with ag, it generates all the even-numbered coefficients:

aj4y = [2.81]

A=K (5-K)  (-K)(1-K)
L= 7 ag, 4 = 12 ay = 24 aq, )

and starting with ¢, it generates the odd coefficients:

G-K) (7 —K) 7-K)3—-K)
- —_— as = = a
g ™ 9 20 =2 120

a3

] E]
We write the complete solution as

h(E) = heven(®) + hoaa ), [2.82]
where
heven(€) = ao + 26 + asf* +---
is an even function of &, built on ag, and
hodd(€) = ar§ + a3t +ase> + -

is an odd function, built on a;. Thus Equation 2.81 determines 4 (%) in terms of
two arbitrary constants (ag and a;)—which is just what we would expect, for a
second-order differential equation.

However, not all the solutions so obtained are normalizable. For at very large
J» the recursion formula becomes (approximately)

2
a; T
Jj+2 S,
J

258¢e, for example, Arfken (footnote 24), Section 5.7.
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with the (approximate) solution i B
C ' i
a_; = e

(/D!

for some constant C, and this yields (at large &, where the higher powers dominate)

L v e

Gt Sl e

Now, if h goes like exp(§ 2y, then ¥ (remember 1 ?—that’s what we're trying to
calculate) goes like exp(£2/2) (Equation 2.77), which is precisely the asymptotic
behavior we didn’t want.2® There is only one way to wiggle out of this: For
normalizable solutions the power series must terminate. There must occur some
“highest” j (call it n), such that the recursion formula spits out a4 = 0 (this will
truncate either the series Haven or the series figaq; the other one must be zero from . ¢
the start: a; = 0 if n is even, and ap = 0 if n is odd). For physically acceptable
solutions, then, Equation 2.81 requires that

hE) ~C)

L8 bR e

e E

for some non-negative integer n, which is to say (referring to Equation 2.73) that E
the energy must be

1
E, :(n%—z)hw, forn=0,1,2,.... [2.83]

Thus we recover, by a completely different method, the fundamental quantization
condition we found algebraically in Equation 2.61.

It seems at first rather surprising that the quantization of energy should
emerge from a technical detail in the” power series solution to the Schrodinger
equation, but let’s look at it from a different perspective. Equation 2.70 has :
solutions, of course, for any value Of,, E (in fact, it has two linearly independent
solutions for every E). But almost all of these solutions blow up exponentially at
large x, and hence are not normalizable. Imagine, for example, using an E that
is slightly less than one of the allowed values (say, 0.49%w), and plotting the
solution (Figure 2.6(a)); the “tails” fly off to infinity. Now try an E slightly larger
(say, 0.51hw); the “tails” now blow up in the other direction (Figure 2.6(b)). As
you tweak the parameter in tiny increments from 0.49 to 0.51, the tails flip over
when you pass through 0.5—only at precisely 0.5 do the tails go to zero, leaving
a normalizable solution.”’

261’5 no surprise that the ill-behaved solutions are still contained in Equation 2.81; this recursion
relation is equivalent to the Schrddinger equation, so il’s gorf to include both the asymptotic forms we
found in Equation 2.75. '

27t is possible to set this up on a computer, and discaver the allowed energies “experimentally.”
You might call it the wag the dog method: When the tail wags, you know you've just passed over an
allowed value. Sce Problems 2.54-2.56.
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FIGURE 2.6: Solutions to the Schrodinger equation for (a) E = 0.49 ho, and
(b) E=0.51 hw.

For the allowed values of K, the recursion formula reads

—2(n — J)
ai O ) 2.84

If n = 0, there is only one term in the series (we must pick @y = 0 to kill Aggq,
and j = 0 in Equation 2.84 yields a; = 0):

ho(§) = ap,
and hence

Vo) = age™
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1

e

(which, apart from the normalization, reproduces Equation 2.59). For n = 1 we
take ap = 0,2% and Equation 2.84 with j = 1 yields a3 = 0, so

hi(§) = aié,
and hence
~£%/2
V1(8) = arge g_-{
(confirming Equation 2.62). For n = 2, j = 0 yields ap = —2uag, and j = 2 gives :
aq =0, s0 :
hy(§) = ap(1 — 282),
and

¥ (€) = ag(1 — 262)e /2,

and so on. (Compare Problem 2.10, where this last result was obtained by algebraic
means.)

In general, A, (¢} will be a polynomial of degree n in &, involving even powers
only, if n is an even integer, and odd powers only, if n is an odd integer. Apart
from the overall factor (ap or a;) they are the so-called Hermite polynomials,
H, (). The first few of them are listed in Table 2.1. By tradition, the arbitrary |
multiplicative factor is chosen so that the coefficient of the highest power of &
is 2". With this convention, the normalized®® stationary states for the harmonic :

oscillator are 1/4 c’
e 1 - 2 |

e O H —£72 2.85

Y () (m) e Hn (©)e [2.85]

They are identical (of course) to the ones we obtained algebraically in Equation 2.67.

#

7
TABLE 2.1: The first few Hermite

polynomials, H, (). {
Hy=1, g
Hy =2,
Hy=42-2, b
H3=8E3— 12¢,
Hy=168%—48E2 + 12,
Hs=328% — 16023 + 120¢&.

28Note that there is a completely different set of coefficients aj for cach value of n.

**The Hermite polynomials have been studied extensively in the mathemalical literature, and
there are many tools and tricks for working with them. A few of these are explored in Problem 2.17.

301 shall not work out the normalization constant here; if you are interested in knowing how il is
done, see for example Leonard Schiff, Quanirum Mechanics, 3rd ed., McGraw-Hill, New York (1968),
Section 13.
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In Figure 2.7(a) I have plotted v, (x) for the first few n’s. The quantum
oscillator is strikingly different from its classical counterpart—not only are the
energies quantized, but the position distributions have some bizarre features. For
instance, the probability of finding the particle outside the classically allowed range
(that is, with x greater than the classical amplitude for the energy in question) is
not zero (see Problem 2.15), and in all odd states the probability of finding the
particle at the center is zero. Only at large n do we begin to see some resemblance
to the classical case. In Figure 2.7(b) 1 have superimposed the classical position
distribution on the quantum one (for n = 100); if you smoothed out the bumps,
the two would fit pretty well (however, in the classical case we are talking about
the distribution of positions over time for one oscillator, whereas in the quantum
case we are talking about the distribution over an ensemble of identically prepared
systcn1s).31

Problem 2.15 Tn the ground state of the harmonic oscillator, what is the probability
(correct to three significant digits) of finding the particle outside the classically
allowed region? Hint: Classically, the energy of an oscillator is E = (1/2)ka2 =
(1/2)mw*a?, where a is the amplitude. So the “classically allowed region” for an
oscillator of energy E extends from —y/2E /ma? to +/2E /mw?. Look in a math
table under “Normal Distribution” or “Error Function” for the numerical value of
the integral.

Problem 2.16 Use the recursion formula (Equation 2.84) to work out Hs(§) and
Hg(%). Invoke the convention that the coefficient of the highest power of & is 2"
to fix the overall constant.

« «Problem 2.17 In this problem we explore some of the more useful theorems (stated

without proof) involving Hermite polynomials.

(a) The Rodrigues formula says that

2 f d N\ 2
— (R (s - 2.
H,(&)=(—1"e (dg) i | [2.86]

Use it to derive 5 and Hy.

(b) The following recursion relation gives you Hy4 in terms of the two preced-
ing Hermite polynomials:

Huy1(8) =26 Hy(§) — 2nHy—1 (§). [2.87]

Use it, together with your answer in (a), to obtain Hs and Hg.

31 The parallel is perhaps mare direct if you interpret the classical distribution as an ensemble of
oscillators all with the same energy, but with random starting times.
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FIGURE 2.7: (a) The first four statignary states of the harmonic oscillator. This
material is used by permission of John Wiley & Sons, Inc.; Stephen Gasiorowicz,

Quantum Physics, John Wiley & Sons, Inc., 1974. (b) Graph of Iy{rlggiz, with the
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(¢) If you differentiate an nth-order polynomial, you get a polynomial of order
{n — 1). For the Hermite polynomials, in fact,

dH,

=2nH,1(§). [2.88]

Check this, by differentiating Hs and Hg.

(d) Hy (%) is the nth z-derivative, at z = 0, of the generating function cxp(—z2 +
2z£); or, to put it another way, it is the coefficient of z"/n! in the Taylor
series expansion for this function:

eI =N (6). 2.89]

Use this to rederive Hy, Hi, and H>.

2.4 THE FREE PARTICLE

We turn next to what should have been the simplest case of all: the free particle
(V(x) = 0 everywhere). Classically this would just mean motion at constant veloc-
ity, but in quantum mechanics the problem is surprisingly subtle and tricky. The
time-independent Schrodinger equation reads

B d*yr
c L g 2.90
2m dx? 4 L
or 2
V2mE
i A OGO OROE Y, il [2.91]
dx? h

So far, it's the same as inside the infinite square well (Equation 2.21), where the
potential is also zero; this time, however, I prefer to write the general solution in
exponential form (instead of sines and cosines), for reasons that will appear in due
course:

¥ (x) = Ae™ + Be ™, [2.92]

Unlike the infinite square well, there are no boundary conditions to restrict the
possible values of k (and hence of E); the free particle can carry any (positive)
energy. Tacking on the standard time dependence, exp(—i Et/h),

: ik e fik
W(x, 1) = AeFE™mD | Bemktamt), [2.93]
Now, any function of x and ¢ that depends on these variables in the special
combination (x T vt) (for some constant U) represents a wave of fixed profile,
traveling in the Fx-direction, at speed v. A fixed point on the waveform (for
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example, a maximum or a minimum) corresponds to a fixed value of the argument,
and hence to x and ¢ such that )

x T vt = constant, or x = vt + constant.

Since every point on the waveform is moving along with the same velocity, its
shape doesn’t change as it propagates. Thus the first term in Equation 2.93 repre-
sents a wave traveling to the right, and the second represents a wave (ol the same
energy) going to the left. By the way, since they only differ by the sign in front of
k, we might as well write

S 2
We(x, 1) = Adi =0, [2.94]

and let k& run negative to cover the case of waves traveling to the left:

P+ ~2mE th k> 0= traveling to the right, [2.95]
==y e M k < 0= traveling to the left. -

Evidently the “stationary states” of the free particle are propagating waves; their
wavelength is A = 27 /|k|, and, according to the de Broglie formula (Equation 1.39),
they carry momentum

p = hk. [2.96]

The speed of these waves (the coefficient of ¢ over the coefficient of x) is

hkl _ [E

Uguantum —
2 2

: 2.97
m 2m { ]

&
On the other hand, the classical speed”of a free particle with energy E is given by
E = (1/2)mv? (pure kinetic, since V = 0), so '

'2E
Uclassical = ‘;1' = 2Vquantum- [2.98]

Apparently the quantum mechanical wave function travels at half the speed of the
particle it is supposed to represent! We'll return to this paradox in a moment—there
is an even more serious problem we need to confront first: This wave function is
not normalizable. For

+00 +00
f W dx :1A12f dx = |A[*(c0). [2.99]
-0 —00

In the case of the free particle, then, the separable solutions do not represent
physically realizable states. A free particle cannot exist in a stationary state; or,
to put it another way, there is no sich thing as a free particle with a definite
energy.

T
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But that doesn’t mean the separable solutions are of no use to us, for they
play a mathematical role that is entirely independent of their physical interpre-
tation. The general solution to the time-dependent Schrodinger equation is still a
linear combination of separable solutions (only this time it’s an integral over the
continuous variable k, instead of a sum over the discrete index n):

W(x, 1) = ] +w¢(k)e"(kx“’ii—?”dk [2.100]
=1 : :

(The quantity 1/ 27 is factored out for convenience; what plays the role of the
coefficient ¢, in Equation 2.17 is the combination (1/ V2m)¢ (k) dk.)) Now this
wave function can be normalized (for appropriate ¢ (k)). But it necessarily carries
a range of k’s, and hence a range of energics and speeds. We call it a wave
packet.*?

In the generic quantum problem, we are given W(x,0), and we are asked to
find ¥(x,t). For a free particle the solution takes the form of Equation 2.100;
the only question is how to determine ¢ (k) so as to match the initial wave
function:

_|..c£.
W(x,0) = J% / ¢ (k)e™ dk. [2.101]
I J—o

This is a classic problem in Fourier analysis; the answer is provided by Plancherel’s
theorem (see Problem 2.20):

o0
f)= o F(k)e™ dk <= F(k)=

1 +00 =
= x)e " dx, 2.102
7N «/Ef_m Fx)e 2 AUU | ]

F (k) is called the Fourier transform of f(x); f(x) is the inverse Fourier trans-
form of F(k) (the only difference is in the sign of the exponent). There is, of
course, some restriction on the allowable functions: The integrals have to exist. >3
For our purposes this is guaranteed by the physical requirement that W (x, 0) itself

328 nusoidal waves extend out to infinity, and they are not normalizable. But superpositions of
such waves lead to interference, which allows for localization and normalizability.

BThe necessary and sufficient condition on f(x) is that ff‘x |.f (x)!zdx be finite. (In that
case ffooo |F (k)lzdk is also finite, and in fact the two integrals are equal.) See Arfken (footnote 24),
Section 15.5.
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be normalized. So the solution to the generic quantum problem, for the free particle,
is Equation 2.100, with j

o) = —\/12—_1 f_ % W (x, 0)e dx.J [2.103]

Example 2.6 A free particle, which is initially localized in the range —a < X < &,
is released at time ¢t = 0:

A df—ag<xr<a
V(x,0) = { 0, otherwise,

where A and a are positive real constants. Find W (x, t).

Solution: First we need to normalize W (x, 0):

(e a ‘l
1= W(x,0)dx = AP | dx=2alA = A=—.
[_mi (x,0)| |A] » |A]| 7o

Next we calculate ¢ (k), using Equation 2.103:

a = —ikx
e—r'kr : 1 e %

1 1
'\.-"237 Jﬂ —a - 2«.-":'1‘{.1‘: —ik l-a

R e“r‘“;— o~ ika 1 sin(ka)
N " 2i S Vma ko

Finally, we plug this back into Equétion 2.100:

¢ k) =

Yl fm sin(ka) igee-40 gy, [2.104]
T 2a J—oo k

Unfortunately, this integral cannot be solved in terms of clementary functions,
though it can of course be evaluated numerically (Figure 2.8). (There are, in fact,
precious few cases in which the integral for W(x, t) (Equation 2.100) can be cal-
culated explicitly; see Problem 2.22 for a particularly beautiful example.)

Tt is illuminating to explore the limiting cases. If a is very small, the starting
wave function is a nicely localized spike (Figure 2.9(a)). In this case we can use
the small angle approximation to write sin(ka) ~ ka, and hence

ik a
d(k) = [—:
T

i o ot e e
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FIGURE 2.8: Graph of |W(x, 9| (Equation 2.104) at ¢ = 0 (the rectangle) and at
t = ma* [fi (the curve). -

. x0) A oK)
vaa [[]
Valn
—dala X I(
(@) (b)

FIGURE 2.9: Example 2.6, for small a. (a) Graph of ¥ (x, 0). (b) Graph of ¢ (k).

it’s flat, since the k’s cancelled out (Figure 2.9(b)). This is an example of the
uncertainty principle: If the spread in position is small, the spread in momentum
(and hence in k—see Equation 2.96) must be large. At the other extreme (large
a) the spread in position is broad (Figure 2.10(a)) and

500 = \/Esin(ka).
T ka

Now, sinz/z has its maximum at z = 0, and drops to zero at z = + 7 (which, in
this context, means k = T 7 /a). So for large a, ¢(k) is a sharp spike about k =0
(Figure 2.10(b)). This time it’s got a well-defined momentum but an ill-defined
position.
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A w(x 0) . Aok
Valt
1
V2a
.,
X T f K
_T I
a a
(a) (b)

FIGURE 2.10: Example 2.6, for large a. (a) Graph of ¥(x, 0). (b) Graph of ¢ (k).

I return now to the paradox noted earlicr: the fact that the separable solution

Wy (x, 1) in Equation 2.94 travels at the “wrong” speed for the particle it osten-
sibly represents. Strictly speaking, the problem evaporated when we discovered
that Wy, is not a physically realizable state. Nevertheless, it is of interest o dis-
cover how information about velocity is contained in the free particle wave function
(Equation 2.100). The essential idea is this: A wave packet is a superposition of
sinusoidal functions whose amplitude is modulated by ¢ (Figure 2.11); it consists of
“ripples” contained within an “envelope.” What corrésponds to the particle velocity
is not the speed of the individual ripples (the so-called phase velocity), but rather
the speed of the envelope (the group velocity)—which, depending on the nature
of the waves, can be greater than, less {Han, or equal to, the velocity of the ripples
that go to make it up. For waves on a string, the group velocity is the same as the
phase velocity. For water waves it is one-half the phase velocity, as you may have
“noticed when you toss a rock into a pond (if you concentrate on a particular ripple,
you will see it build up from the rear, move forward through the group, and fade
away at the front, while the group as a whole propagates out at half the speed). What
I need to show is that for the wave function of a free particle in quantum mechanics

FIGURE 2.11: A wave packet. The “cnve-
lope” travels at the group velocity; the “rip-
ples” travel at the phase velocity.
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the group velocity is twice the phase velocity—just right to represent the classical
particle speed.

The problem, then, is to determine the group velocity of a wave packet with
the general form

W(x, 1) = ¢ (kye! B dk.

1 +00
Noz 3 /_oo
(In our case w = (hk*/2m), but what I have to say now applies to amny kind
of wave packet, regardless of its dispersion relation—the formula for w as a
function of k.) Let us assume that ¢ (k) is narrowly peaked about some particular
value kg. (There is nothing illegal about a broad spread in k, but such wave packets
change shape rapidly—since different components travel at different speeds—so
the whole notion of a “group,” with a well-defined velocity, loses its meaning.)
Since the integrand is negligible except in the vicinity of kg, we may as well
Taylor-expand the function w (k) about that point, and keep only the leading terms:

w(k) = wo + wy(k — ko),

where ], is the derivative of @ with respect to k, at the point kg.
Changing variables from k to s = k — ko (to center the integral at kg), we
have

1 +o0 ) L }
Lp(x’ I) = — ¢(k0 - ‘g)el[(kOT-s)-l—(ﬁﬂﬂ‘l-w[].ﬂfj ds.
=1
At1 =0,
1 +o8. :
Vx,0) = — f ¢ (ko + 5)e’®0F) ds,
V2r J -0
and at later times
Yix, 1) = Lei(_“"”"'k‘)“’a‘) f+w b (ko + )¢t koGt g5,
' J2r -

Except for the shift from x to (x — wjr), the integral is the same as the one in
W(x,0). Thus :
W(x, 1) = e H@ko)y (x — wiit, 0). [2.105]

Apart from the phase factor in front (which won't affect |W|? in any event) the
wave packet evidently moves along at a speed wj:

dw

Ugroup = E [2106}

(evaluated at k = kg). This is to be contrasted with the ordinary phase velocity

w
Uphase = Tl [2.107]
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Iifid £
| Tn our case, w = (Ak2/2m), so w/k = (hk/2m), whereas dw/dk = (hk/m), which
! is twice as great. This confirms that it is the group velocity of the wave packet,
i not the phase velocity of the stationary states, that matches the classical particle
velocity:

Uclassical = Vgroup = 2"J'l::hascA [2.108]

Problem 2.18 Show that [Ae™* + Be™# ] and [C cos kx+ D sinkx] are equivalent
ways of writing the same function of x, and determine the constants C and D in
terms of A and B, and vice versa. Comment: In quantum mechanics, when V =0,
the exponentials represent traveling waves, and are most convenient in discussing
e the free particle, whereas sines and cosines correspond to standing waves, which
Fili arise naturally in the case of the infinite square well.

Problem 2.19 Find the probability current, J (Problem 1.14) for the free particle
wave function Equation 2.94. Which direction does the probability current flow?

«*Problem 2.20 This problem is designed to guide you through a “proof” of Plan-
cherel’s theorem, by starting with the theory of ordinary Fourier series on a finite
interval, and allowing that interval to expand to infinity.

(a) Dirichlet’s theorem says that “any” function f(x) on the interval [—a, 4a]
can be expanded as a Fourier series:

fx) = Z[a,, sin(nmx/a) + by cos(nmx/a)l.
n=(}

Show that this can be written eqﬁivalently as

oo

f(x),-'t Z Cnefmr,tja_

n=—00
What is ¢, in terms of a, and b,?

(b) Show (by appropriate modification of Fourier’s trick) that

1 (e

o) f(x}e—m:rx;‘a i
2a )4

Cn
(c). Eliminate n and ¢, in favor of the new variables k = (nm/a) and F(k) =
J2/7 acy. Show that (a) and (b) now become
+a

Y Floe™ ak; F(k)z_lfz_ FG)e ™ dx,
7w J-a

where Ak is the increment in k from one n to the next.

1
flx)= —-ﬁﬂz_m

-

|
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(d) Take the limit @ — oo to obtain Plancherel’s theorem. Comment: In view
of their quite different origins, it is surprising (and delightful) that the two
formulas—one for F(k) in terms of f(x), the other for f(x) in terms of
F(k)—have such a similar structure in the limit ¢ — cc.

Problem 2.21 A free particle has the initial wave function
W(x, 0) = Ae W,
where A and g are positive real constants.
(a) Normalize ¥ (x, 0).
b) Find ¢ (k).
(c) Construct W(x, r), in the form of an integral.

(
(d) Discuss the limiting cases (a very large, and a very small).

xProblem 2,22 The gaussian wave packet. A free particle has the initial wave
function

W(x,0) = Ae™®,
where A and a are constants (a is real and positive).
{a) Normalize ¥(x, 0).
(b) Find W(x, r). Hint: Integrals of the form

+00 3
/ e—{ax +bx) di
—00

can be handled by “‘completing the square™ Let y = /a [x + (b/2a)], and
note that (ax? + bx) = },2 - (b2/4a). Answer:

/4 —ax? /[1+Q2ikat/m)]
2a e

Y(x,1) = — :
,2) (Ir ) J1 + (2ihat /m)

(¢) Find |W(x, )% Express your answer in terms of the quantity

w= [— 2
1+ (2hat /m)?

Sketch |W|? (as a function of x) at r = 0, and again for some very large 7.
Qualitatively, what happens to [W|2, as time goes on?

(d) Find (x), (p), (x%), (p?), 0%, and op. Partial answer: (p%) = ah?, but it
may take some algebra to reduce it to this simple form.

(e) Does the uncertainty principle hold? At what time 7 does the system come
closest to the uncertainty limit? -




