
PART I THEORY

CHAPfER 1

THE WAVE FUNCTION

I,I THE SCHRODTNGER EQUATION

lmagine a particle of mass rt, conshained to move along the r-axis, snbject to
some specifrd force F(r,, (Figrc l.l)- The program of.ldssiral mecharics
is to determine the position of the particle at any given time: r(t). Onc€ we
know that, we can frgure out the velocily (u : fu/dt). the rnonentun (p :
r?ri), the kirctic energy (Z : (l/2)mrr2), ot any other dynamical variable of
iderest. And how do we go about determining r(t)? We apply Newton's sec
ond law: F : mo. @or consenatire systems-the only kind we shall coD-
sider and, forlunately, $e oDly kind that ot:cn at the miqoscopic level the
force can be express€d as the derivative of a potential energy tunctio&t F :
-Aylar, ant Neq,ton's law rcaAs nd2x/dt2 : -AVftr.) This, together with
apFopriate initial cotrditions (B?ically the position and velociq7 at t : 0), deter-
mines rlt).

Quatrtum mechanics approach€s tis same problem quite differendy. ln this
case what we're looking for is the panicle's wav€ function, V(r, t). and we get
it by solvjng the Schritdinger €quation:

da  h t  az "
i h  :  - +Yq .

at 2m arz t t .  ' l

LMa$etic foEes @ e erception but leas mt worry about thenjust yet. By the way, we shrll
assume throughour thh book that dc notion is norelativistic (, <<.).



ChaPtar 1 The Va'e F n tion

FIGURE 1.1: A "pani.l€" costraired to nove in one dimesion mder the i'fuerce

Here i is the squarc root of -1, and t is Planck's consta -or rather his o/igtnal

consbtrr (r) divided bY 2':

1.054572 x lo-sJ s.
2E

t1.21

;T,*H1til'.,l#*'Jlffi .L',hf i'fl,.i,.-i1THi:-XT;:;uffi ::
4."*t"* Vir, O for all future time, just as' in classical mechadcs' Newton's

law detenDines t(t) for a{ futwe iime _
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1.2 THE STATISTIC.qT NNITERPRNTATION

But what exactly tr ttfs *wave firnction"' ard what does it do for you once you've

gri itf et". uff, 
" 

pu.ti"f", by ils nature, js localized at a poitrt' whereas the wave

?ur",ioo f^ io or-" ."*gesis) is spead out in space (itt a imctior ^of 
r' for any

"i*" 
t-" O. ff.* "r" "*h 

ar object Ieplesent ihe st^te of a pafiick'! Ihe ar,swer

i. 01"",a.1 ot S.- . 
"rtisrical 

itrterpretation of the wave tuocdon whicb sav\

trra'itvtx. rllt gives *e probdrilitv of fitrdi4 lhe particle ar point r' at hme / -or'

more precisely.'

trsl

Probabilirv ts fie ara underlhe grapb of lvl'? For dle wave tumnon in Frgu'e, l 2-

lou woul; be quile likelv to fitrd the particle i! $e vicrnjty ol portrl A wnere lv l

is targe, ana retatlvety mlikely to find it oear point B'

- - 
,*. 

" 
****^*"Id Mouit of rhe odgiN !f tne scbridingPi eqMtioD s* th€ article bv

Felir Blch in Prtrt s ?i/d) D@nbd 19?6'_ -_'*. 
t*,-cii- *"n it conpld, but 1ql2 = {'*v (wbee {J* is lle @tr]llex conjngare of

Vl is st oa oono"eudve-* a pmb'bilitv, of @me @{ rE



Se.tiofl 1.2: The Stdtisti.al lrtee/etdtioh

FTGURE 1.2: A typical wave fuftrion. The shaded dea represetrts rhe probabitiry of
linding thc panicle between a and &. The particle woltd be relativcly Iikely to be found
near A. add unliketv ro be found nea. B.

The sradstical interprehnon introduces a kind of indet€rminacy into quan-
lum mechanics. for even if you know everything the theory has to rell you about
the pafticle (to wil: its wave function). still you cannot predicr wirh cefainry rhe
outcome of a simple experiment to measure its position all quanrum rncchan
ics has 1o offer b rtairtlcdl inJonnation about the pr.rrttls rcsulrs. This irde-
ten nacy has been profoundll disturbing to physicists and philosophers alike,
and it is natural to wondcr whether it is a fact of narule_ or a defecl in rhe
lheory.

, Suppose I do mcasure the position of the prnicte, and I find ii ro be ar point
C .- Q estion: Wlere was the parlicle just ,e/ore I made the measurement? There
are three plausible answefs to this question, and rhey serve io characlcrize the main
schools of thought regarding quantum ideterminacy:

1. The realist position: 7 he paftitlz v,as at C. Thts cerrainly lecrns like a sen-
sible rcsponse. ard it is the one Einslein advocated. Nore, however. rhar if rhis is
true then quaDtum mechanics is.e inconplete theory, since the paricle redllj| wdr
at C, and yet quantum mechanics lvas unable to tell us so. To rhe realist, inderer-
ninacy is noi a fact of nature, but a €flection of otrr ignoranc€. As d'Espagnat pul
it, "the position of the particle was never indeterminate, bur was merely unloown
to lhe experimenter-"tr Evidendy V is not the whole slory some addirional infor-
mation (known as a hiddetr variable) is needed to provide a complete description
of the panicte.

2. The orthodox position : The panicle wasn't reall, antwhere. Ir was rh,e acr
of measuremeni that forced the prnicie to "rake a stand" (though how and why il
decided on the point C we dare not ask). Jordan said i! mosi starkly: ' Obse arions
not only dirt&r, what is to be measured. they p.odrc" il ... We cor?el (rhe

aof cousc, m bcrsding inshFenl n p€declly pMisq whai L'€dr is ttrai ttc p.Jticle ws
,  J r J  n  t a "  v , . t r t \  o i ,  .  . o  $  . hn  | hp  . oF ,  j f r  . i  , ne  e4 '  , po .q '

5Bcrnard d Espagn,! 'rhe 
Qua.lun Theory and R€alirt (Scientidc Arcric.4 Novenbdr t9?9.

p 165)
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particle) to assume a definite position-"6 This view (tlle so called Copenhagen

int€rpr€tation). is associaled widr Bohr and his followers Among Phvsicists rl

has ilways been the most widely accepted positioD Note, howevef. that if it is

correct there is something very peculiar about dre act oI measurement something
fiat over half a c€Dlury of debate has donc precious littlc to iihnnnate-

3. The agnostic Position, Rdrse to a svel This is not quite as sillv as it

sounds-after all. what sense can thcre be in making assedions rbout ihe stalu$

of a pddcle 6€Fre a measurement, wh€n the only way of knowing whether vou
we.e righl is precisely to conduct a measurement, in which case what vou get is no

longer "bcfore the measnrement?" Ii is metaphysics (tu the pejorxtive sense oi the

word) to worry about somethiDg that canno!, by its nature, be lcsted. Pauli s'tid:

"One should no more rack one's brain about lhe problcm of whether sonething one

camot know anything about exists all tbe snne, thar aboxl the ancient qtrestion of

how nary angels are able to sit on lhe point of a needle." / For decades ftis was the

"fall-back' position of most physicisls: Tlley'd try to sel vou the odhodox answcr.
but if you were persistent they'd retrcal to the agnostic €sponse, and termimte the

Uniil fairly rccenrly, aI three posidons (rea1isl, orlhodox, and agnostic) had

rheir partisans. But in 1964 John Bell astonishcd the phvsics conmunilv bv showing
thar ir makes an orr€ndble difference whether lhe particle had a precise (though

unlmown) posi{ion prior to the measuemenl. or not Be['s discovery effe.tlvelv

eliminated agnosticism as a viable option, and ade lr ^n etperimen,al question

whether 1 or 2 is the corect choice. I'll retum to this slory at the end of the book.
when you will bc in a bettef posi.ion to appreciate Belt s ,rgrmenl for now' sutfic€

it io say lhat the extenments have de.isively confiflned thc orthodox intcrpreta-

tion:s A parlicie sinpiy do€s not tdt€ a precise posilion prior to measlrernent, any

more than the dpples on a pond do; it is the meNurenent process lhat insists on

one parriculff number. 3nd lhereby in a sense dr"ates the specific result limiled
only by the staisncal weighting irlrposed by the wave tunction.

What if I made a r€co'd measurement, ,,"onedidreb after thc first? Would T

get C again, or does the act of meas!rcnrent cough up some completely new num

ber €acb time? On this question cveryo e is 'n agreemeDt: A .epeated measu.emenr
(oD lhe same padicle) must retum .he same value. bdeed' it would bc tough lo
prove that the parlicle was really fourd at C iu the lirst instance' if this could not
be confimrd bv innnediate repetition of the measuremeni. How does the orftodox

6Quote! in a lovely arricle by N. David Memitr, "rs de n@n ihde shcn lobod, looks'r"
(Fhysics Todry, Apil 1985, p 38)

TQnoted by Mendn (footnore 6), p. 40.
sThis staFnenr is a titilc llo stongi ahe.e Etain a feN IheoEdcal Md cxpcimenul l.olholcs,

soDe of which I shall discuss in lne AteNord Thce cxist ri$le nonlocal lridden vfirble thcoris
(notably David Bonm s), bd odE. fornulaiions {sucb d ihe nanv forlds int€ryr.tation) tnat do n't

nt cbbly into any of ny ihree calegories Bnt I thini n is wise at leasr iros a pcdaeocical Poiit 'r
vicw. to adopr r.led dd coherent lladbrm ar liis stalc, a.d w.rry about thc alemauves l,or

. i .

1,3 PROBA
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Se.tiok 1.3 : Pro bability

FIGURE 1.1: Collapse of thc wave funcrion: graph of lvl2 irediately aftu a
me$uenent har found the particle at point C.

inte4)retatior account for the fact lhat the second measurement is bound to yield
the value C? Evidently the first mersurement radically alteN the wave function,
so that it is now sharpty pealed about C (Fi$re 1.3) We say tbat the wave func
tion collapses, upon measurement, to a spike at the point C (it soon spreads out
again, in accordance with rhe Scfuijdinger equarion, so rhe second measuremert
must be rnade quickly). There are, lhen, two entirely distinct kinds of physical pro-
cesses: "ordinary" ones, in which the wave function evolves in a ieisurely fashion
under the Scbrttdinger equatio:! ,nd "measuremenrs," in which V suddenly and
discontinuously coltapses.e

1.3 PROBABILITY

1.3.1 Discr€t€ Variables

Because of the stalisticrl interpretation. probabfii plays a centml role in quantum
mechanics, so I digress low for a brief discussion of probabiliry theory. It is mainly
a question of introducing some notation and terminology, and I shall do it in dre
context of a simple example.

Inagirc a room containing fourteen people, whose ages are as foilows:

one Penon aged 14.

one person aged 15,

tlree people aged 16,

'The rcle of nasucne nr qudtum mehanics is so .ndcal ud so bizare lnat you my
qell be wondedng whar pEisely ."nst!rd a meduredenl Do6 it have to do vith the inicndion
beiweo a micros@pi. (qMtum) system ed t @crcscopic (clssical) nasunng appmtus (s Bohr
iosisted), or is it chdacrdizd by rhc lcaving or a perunent r4ord (as fiei*nber! clained). or do*
it nrvolve thd jnbryention of a conscious obsNer' (a wigner pmrrosed)? I'11 .erh to $is thomy
issue in lne Aateflor.t lor lbe moment lel s ra&c dD .aiv.e viewi A ftasnBdeni n ihe i<ind of lhins
drat a scicniist docs in ihe laboratory, wilh mle.\ slopvat hs. Geiger counrcs. and so on.
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two People aged 22,

two people aged 24 '

five People aged 25'

ff we let 1v(j) rcpresent the nunber of peopte of age i' then

l{(14) = I'

N ( l s ) : 1 '

rv(ro = 3'
N (22) :2'

N (24) = 2,

x(2s) :5'

while N(1?), for instance' is zero The totdl n mber of people in the room is

r :  D"trr .  t1.4]

0n .h€ example, of 'rowse, N : 14 ) Figwe 1 4 is a histograrn of the data The

follow;ng are som€ questjoDs ooe nigll 3sL abour lhis disEibulion .
qistion l lf'you selected one ndividud ar nndom from this goup what

is rhe probabilit] rhal lhj( PeNon s age would te 15? A'rwffr One,chance.in

t4, sinc€ there are 14 possible cho'ces' ail equdly likely ol whom ootv one.n'-s

ttrat particutar age. ff P(i) is the probability of gettiry age j' then P(14) =

r/i, P(rs\:11u. P(16) :3/14, and so on ln general'

t t .s l

FIGURE 1.4: Hiitosram sho{ins rhe nunbd of peoPle' N(t' with ase i' for the

distribution h Se.'tiotr 1.3.1.

ir '( i)P(r:- ;
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Notice that the probabiliry ol gettng either 14 or

Fobabilities (in this case, lr). In paficular, the
l-yo]I'rc ceftain to get some age:

IPr; i :  t

Suzstion 2. \*t\at is the most probable age? Affwerr 25, obviously; five
people share this age, whereas at most tbrc€ have any other age. In geneml, the

mosr probable j is the j ior wbi.I' P(i) lr a ma\[num

Qrerton .1. What is rhe medig'n aee2 Arawer: 23, for 7 Peopie are yourger

than 23, and ? are older. (In general, the median is that value of j such that the
pmbabiliry of getting a larger result is the same as dre probability of getting a

smaller result.)
Suestion 4. What 1s rhe aYerage (or mean) age? A,tflt?/r

(r4) + (1s) + 3(16) + 2(22) +2Q4) + s(2s)
I4

In general, the average value of j (which we sha[ write dlus: U)) is

Se.iioi 7.3 : Pla ba bilitl

15 is the rrn of the individual
sum of l'll $e probabfiti€s is

t1.61

294
n

Notice that there need not be alyone widr the average age or the median age-in
this exanrple nobody happ€ns io be 21 or 23- In quantum me.hanics the avenge

is $ually the quandry of interest; in that context it has come to be called the

€r?€ctation value. It's a misleading terrq sinc€ it suggests that this is ihe outcome
you would be most likely to get if you made a sirgle measwement (tut would

be rhe most prcbable valu4 not lhe av€rage value)-but I'm afraid we'r€ stuck

with it.
Or€$ror t Wlat is the average of the rq,tarer of the ages? ArNw€'. You

could gel I42 = l06. wi$ probabi l i ty l /14. or 152 - 225. witb probabi l i rv l /14.

or 162 : 256, with probability 3/14, aM so on. The average, then, is

I i2J:L j2P(i).
j4

ID general, ihe avemge value of somefrrctiot of j is given by

, r , ; ' r  \ -  r , ; , o , ; '

j'4'

: t iP0). t1.71

n.8l

n.el
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FIGLTRE 1.5: Tvo listo$ams with .hc same median, sme aterage, dd eme most
probable value, but different sta dd d€viations.

(Equations 1.6, 1.7, and 1.8 are, if you like, special cases of this formrna.) Bewdr€.'
The avemge of the squares, (j'z), is o, equal, in general, to the square of dle
average, U)2. For instaff€, if the mom cotrtaids just rv,o babies, aged I and 3,
tllen (r2) :5, but (')2 :4.

Now,thereisacoDspicuousdifferenceb€twe thetwohistograflsinFigure 1.5,
even thorgh they have the same nledian, th€ sane avemge, the same most probable
value, and the sarne nunber ofeleme{ts: The fust is sharply peaked about the average
value, whereas the second is broad and flar (fhe fi$t might rcFese$ the age profile

for students itr a big-cily clalsrcoll! the second, p€Ihaps, a rur3l one-mom school-
house.) W€ ne€d a numerical measule of the amount of "spread" in a disaibution,
with respect to ihe average. The most obvious way [o do tlis vrould be to fnd out
how far each itrdividual deviat€s from the average,

t1_ro1

and compute the avernge of Aj. Trouble is, of cou e, that you get zero, sifte, by
the nature of the avemgq Aj is as oftetr negalive as positive:

(^j) : t0 - UDPU) : f ;pr.rl - t.;l I P<;l
:0 )  U)=0 .

(Note ftar U) is constant-it does not change as you go ftom on€ inember of
the sample lo another-so it can be taken outside tbe sunmation.) To avoid this
irritating Foblem you might decide to average tlre absohre raLue- of Aj. But
absolute values are nasty !o work with; instea4 we get aroud the sign prcblern
by sqraring before avemging:

o2 = ' ( (  j )2) . t1.1r l

1 2 3 4 5  6 7 a 9 1 0  I 1  2  3  4  5  6  7  A  9  i 0  I
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This quantiry is known as the vadance of rhe distriburion; d irself (rhe square
rcof of the avemge of the square of rhe deviation from the average_gulp'!) is
called the standard deviation. The larer is ihc custonary measure of the spread

There is a useful linle theorem on varianccs:

"'?: 11a71'11 :f14l,p(il:Dti tit>, p tit
: l t j2-z ju)+t ihr{ j \

-  
\  i '  e '  ;1  -  t t . i tL ,  p '  i ,  - '  i l  L  p , t ,

: ( i, l  2u)li) + \i)2: \ iz) (i)2.

Taking ihe square rcor, the standard deviation irself can be writien as

tI.12l

ln.practice, this is a much fasrer way ro get,: Simpty catcutare (jr) and U)r,.ubrmc,. and tdl(e rhe .qurre roor lncidenra y I ulrned you a momenr aso lhdr( i1 is nol  In eeneral ,  equat ro ( j )2.  Stnce o'  i .  ptdinly nonnegat ive i i r"om ir .
definitior in Equation l.l1), Equarion 1.12 imDties thar

uzl > (i)2, 11.l3l

and lhe hvo are cquat only when o : 0, which is to say, for disrributions wirh no
spread at a (every member haviDg the same value).

1.3.2 Continuous Variables

So rrf. I have a..umed $ar $e ar dealing with a di,.tpt? vd-riabte r}ar i\, one
lhu( can lale oir onl) c€rlain isolated vatue, {rn rhe e\umpte. j had lo be an
intcger, since I gave ages oDty in ye.ars)_ Bur it is simpte e.oughio generatize;
.?rrn@'r distriburions. If I select a random person off the s&eet th; probabnity
that her age is ?r"ecrreb 16 years, 4 hours, 27 minutes, and 3.333 .. . 

"".ooa" 
i"

zero. The only sensible thing to speal abour is rhe probabiliry rhat her age lies in
some t reDal-say, berween 16 and 17. If the inrerval is sufficiendy ;orr, this
ptoba'htlity is, ptoponional to the tength of thz intenat. For example, the chame thar
her agc is bfrqeen t6 and to ptu\.wd d,) .  rs prE.umabt) rwic€ $e probab;t i ry
thdl r t  i \  ber$een 16 aod tb ptu\ ov Ja).  runtess. I  suppo,e. r terc wa. .e66
:xtraor.dinary baby boom 16 years ago, on ex4crly ttat aay in which cas€ we
havc simply choseq an inte.vat roo long for rhe rule to appty. If rhe baby boom

\ i2) - u)2
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lasteal six hours, we'Il take htervals of a second or loss' to be otr IIte safe siile'

Tecbnica[y, we'rE talki4 about tnjlnitertnal interyals ) Thus \

I  probabi l i ry l .har an individuai fchos€D. l .  o, . , lar.  t t . t4 l
I al radom) Les berwe€n 'r and (r i d r I I

The oroooruoDaliry faclor. p(r l. i5 otuo loosely called *$e probabllity of gening

r;lu'u, ;it it tfoppy f*eurge: a brser lerm is pmbabilitv densih The probability

ftat r lies between a and b @rtnftc i$tx.u9])'|s g]ven by &e htegral of p(t):

t1.r5lp(x)dr,

and the dles we aledlced for disqete disfibutions translate h the obvious way:

'*: l"o

r: l** oata,.

@r: I  *  4@d+

l f@)): l,* 
f(x)P(x)dx'

02 : l<&)21: lx2 \^ l ' )2 .

11.161

11.r71

t1. l8l

t l_l9l

Examole t.l Suppose I drop a rock olT a cti-ff of height A As ir fails' I snap a

rni[ioD photographs. ar random inErvals OD each picrure I mealure $e distdnce

tft" ro"t has fiU"". O*"rioa Wtrat is the d'erag" of all ihese distances? That is

io try, *ft", i" ,U" t;r" ,te.a8e of the distaDce traveled?lo

Sohtion The rocL starts out ai rest, and picks up sp€€d as it falls; it spends more

time near the top, so the average distanc€ D st b€ less than n/2_ Ignoring au

rcsistance, the distance t at time t is

t _
t t t t :  

; 8 t , .

The velociry is dtldr - 8r. and $e tohl nigbl riDre is I - Jzi- Tbe probabiliry

rr' L O. ca-.tu na.n"" in lhe interval dr is drlt. so Se probabiliry lhar a gilen

loA solGrnidr w'U mprar thd I m .onfure Lhc a'enge or r Ia'. a Ph (a d'not a

LhE ff) wrth the tu avmse (o!s 6e $holc connDud) Thi: @ bc s dwhN Foorm Ior

,1," .-"Jt".tri.'. *p*i"ny 
"ie; 

lhe emtl' rir ir soEn bd here I d oDlv ! oocmsl ol loJe

;irtr ;1; ;. -*s" i. *\l;t th. qnple av.Ese s pEsddab'v a emd aptonmnoF
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SectiM 1.3: Prcbabtlitt

FIGURI L6: The probability density h Example 1.rt p@\ = ltQJri-

phorogmph shows a distarce in the conesponding mnge dt is

dr dx fT I
r -  

i , l  u: zlr,"o'

Evidently the probability de"rrt] (F4uation r.14) is

I
pt.r)  -  ---- .  (0 : . r  :  / t )

z,! nx

(outside this rarge, of course, the probabiliry density is zero).
We can check thb rcsult, ustug Equation 1.16:

r h  |  1  ,  - , | f t
I  - d x - - ( ^ t / z \ l  - 1 .

Jo zJhr 2Jh \

The areraa€ distarce (Eq arion l.l7) is

f h  1  r  / 2 . , , \ l h  hnt-lox - a'=r;,  lr ' ' , ' ) [- i
which is somewhal less thaa tr/Z as anticipated

Figure 1.6 shows the graph of p(.r). Notice that a probability deniry can
be infinite, though pmbabiw itself (the integral of p) must of cou.rse be inite
(indeed l€ss tiatr or equal to l).

1 1
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*Problem 1.1 For the disaibuiion of ages in Section 1.3.1:

(a) Compute U2) and (J)2.

(b) Detemine Aj for each j, alld use Equalion 1.11 to compute the stadard
deviatior

(c) Use your rcsults in (a) 3nd (b) to check Equation 1.rz

Probl€rn 1.2

la) Find dle siandard deviarion of the distibution tu Exanple 1.r.

(b) Wlal is drc probabfity that a photograpl! selected at nndom, would show a
distarce r mdre thar one standrrd deviatiotr away ftom the average?

'kProblem 13 Consider rhe gaussian distibution

P(x) : Ae L(r-a)'z '

where A, d, and ), are posi.ive real constants. (Look up any hte$als you ne€d-)

(a) Use Equation 1.16 to determine A.

lb) Fid {r), ("), and o.

(c) Skelch drc graph of p(r).

1.4 NORMALIZA'IION

d
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We retum now to the srarisdcal tuterpret?tior of the wave function (Equation 1.3),
which says that lv(', ')|'? is ltre Fobability deDsity for finding the particle at point
.r. at time r. ll follows (Equatiotr l.16' Ual the integral of l{,|':must be I t6e
pafiicle's got to be srnewhere):

tr.20l

Without this, ihe statistical interFeradon would be nonsense.
However, this requiremenr should disEnb you: Aner a[ I'be q/avi iirncton is

supposed to be determined by the Schidlinger €quation we can't go imposing
atr extraneous condition on v wilhout checking thar the fir'o are consistent. well, a

l* v r,. ot' a, : r.
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{ tvo,, t t 'a ' .

glance at Equatior l. I reveals that if V (-!, 4 is a solution, so too is AW (r, t), where
A is any (comptex) constatrt. What we must do, then, is pick this udeterrniDed
multiplicative factor so as to ensure that Equation 1.20 is satisned. This process
is cafed normalizing lhe wave tunctior. For some solu.ions to the Schriialinger
equation the inregral is infuite; it dDat case nt multiplicative factor is going to
make ii 1. The same goes for the tivial solutior ,v :0. Such non-normalizable
solutions crnnot represent paticles, and must be rejected. Physically realizable
states corespond to the squar€-int€gable solutiotrs to Scfuoditrger's equation."

But wait a minute! Suppos€ I have nomalized the wave tunction at time t : 0.
How do I know that it wil rrd) normalized, as time goes on, aIId V evolves? (You
can't keep rdnornalizing lhe wave function, for then A becomes a functior of t,
and you I}o longer have a solution to the Sclfifiinger equation.) Fortunately, lhe
Schodinger equatior has the remarkable property that it automatically preserves the
romalization of the wave firnction without this crucial feature the Schrddinger
equation would be incompatible with the s.atistical inter?retation, and ine whole
theory would crunble.

This is important, so we'd better pau.se for a caretul proof. To begin with,

, .+d .+@
+ I  tv l , t )zdx :  I
a t J  -  J  o

lr.21l

t.nl

tr_231

O,lote tiat the irtgrdl is a function only of t, so I \se a total deitatj'\/e (d/dt)
ir the fust expression, but the integrond is a lnnction of r as wefl as t, so it's a
partial denv^ive (a /at) i the second one-) By the product flle,

I  1v1,.  ̂a ' , t ,  v,  .  v '$ 1 9+' ,r , .

Now tbe Sckijdinger €quarion says rhat

av ih azv
At 2n At1

and hence al.o (rakjng fie complex ,oojugac of Equahon l.2J)

,q+ rh a2v' r
Ar )m dx'z h

!,we : ](.'; - #.) : *l*(,.# T.)l u"l
rltuia*tb v(',l) -ust so tn.oo fasrq the !/a4;T. as lrl+ @.lrtidentauy. nomaliarion

only nics rhc ndlal6 of A; the /dr rcmins udeiercincd. Eowevea 6 *e shall s, the lalter
cmis rc physical signilicMce dy'€y.

[r.24]
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The integral in Equation 1-21 can now be evaluated explicitty:

I1.261

But V(r, t) must go to zero as 'I goes to (-l) innnfty-otherwise the wave function

would not be rcrmalizable.l2 It follows that

:  I  v r r . / r l z / ,  =0 .  t t .27 l
at  J -a

and hence tiat the integral is cordttzt' (independent of time); if V is nomalized

at t:0, it ddp norroalized for allfuture time- QED

Problenr 1.4 Ai time 1 = 0 a particle is represented by the wave function

{  e l ,  i f o= - r : . r ,
t a

+ r , . o r=  |  , q , ,  ! .  t a  ,  . a .
|  

\ D  a l

t 0, otherwise,

where A, .], and t are constants,

{a) Normatize u r thar i . .  f ind A innrm"ofaandbi

(b) Sketch v(r, 0). as a tunction of '

(c) wlere is the pa{icle most litely lo be fou ' at I :0?

(d) What is lhe probabiliry of finding the particle to the left of d? Check your

result in tne ImitinC cases b : a attd b :2n.

(e) Wllat is the expectatior value of jr?

*Problem 1.5 Cotrsider the wave funclion

V(t ' t )  :  Ae ) ' l ' le- i ' t  '

wherc A. )., and z, are positive real constants. (We'11 see in Chapter 2 what pot'ential

(y) actually Foduces such a wave fmctron-)

(r) \omalize q,.

(b) Delermine the expectation values of t ard t2.

uA good natheMricid car supplv vN win patholosic!.I cou'te€nnples but thev do not {ise

in Dhvsicsr for us lne qavc tunctio. dlMF sod lo zerc d i'lidry'

f f* va,oro": ](..# #9[:

1.5 MOMEI\
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(c) Find the standad deviation ofr. Sketch the graph of lpl'z, as a function
of 'I, and mark the points ((r) + ') and ((;r) d), to illusaale the sense in
which d represents lhe 'lpread" in r. Wlat is the probability that the particle
would be fo nd oulside this ranse?

1,5 MOMENTUM

For a particle in slate \y. ahe exDectalion value of :! is

tr.28l

What eMctly does this mean? It emphaticaly does rot mean that if you measure
the position of one panicle over and over again, /rlvl2dr is the average of 11€
results yor'll get. On the contrary: The tust mersurement (whose ourcome is inde-
tenninate) wil colapse the wave function to a spike at the value actually obtained,
and the subsequent measurements (if they're performed quickly) will simply repeat
thai same result- Rather, (r) is the average of measurements performed on particles
a in the state V, which mealls that eirher you must find some way of returnins the
particle to its ofginal state after each mearurement. or else you have io prepare a
whole cnscmble of particles, each in the same state U', and measure the positions of
a[ of them: (r) is the average of rn€re results. (I like ro picrure a row of t]onles on
a shelf, each containing a particle in tl€ state V (relalivc to the c€nter of the bonle).
A gnduate studeni with a .uler is assigrcd to each bofile, and at a signal they all
measure lhe positions of lheir respectiv-e particles. We then constrlcl a histogram
of the results, rvhich should natch lq ', and compltte the average, which should
agrec with (r). (Of course. since we're only using a finite sample, we can't expect
pedect agreemen! but the morc botlles we use, ihe cioser we ought to cone.)) In
shoq thz etpectation wlue i the awrage of rcpeated. measurements on an ensem
bk of inetuicaryy prcparcd ryrre .!, not the average of repeated measurements on
one and the same system-

Now, as time soes on, (r) will change (because of the .ime dependence
of V), and wc might be intereste,l in knowing how fasr it moves. Referring to
Eouations 1.25 and 1.28. we see thaC3

'+,' 
I,: +ia,-,h |,{(* ii 

',1'.,), ,,2qr
''To kep d'ings &on g€ning roo clulteled. I 11 snpprcss rhe liniLs of inlegFrion.

rlv(r, t)17 dx.



Chaptd 1 The Wa'e rvrctua

This erFession catr be simplified using integation-by-parts:ra

dtxt _ ih i /*_9! _ y*) ,,.
tu ?nJ \  i tx i tx I

rl used de fac! *Iar arlAr ' l. atrd $rew away lhe boudary lerm on lbe ground

riaL V so€s ro zero at (J ) inndty , Performing another iEFgrarioD by pans otr

ue seco-od Lerm, we conclude:

dti t  :  - ' !  i* .Pr,
d r  m )

tl.30l

tr. l l l

tr33l

What are we to mak€ of this rcsult? Note that we'rc talking abour the "ve&c-

irrt oi i 
""punnn 

lalue ol I wbich is Dor the same l-hi4 as the velocirv of

rfr. ro"i.f.. lforlioe 
"" 

i'ave seen so tar would eoable us lo calcul'le lbe velocity

.il"-,;.L. r''. *i ** clear whar velociiv mraur in quatrum merhanics: If the

*.r.;ir" aooo r rtuu" u a.termitrale posioon {prior lo mearurenenl) neilber do€s il

iJ" r *"ffl"n*a ,n r."irv. Alt wi coultl reasonably ask for is the pro'd&ltl)- of

*o1"" 
" 

o*i.U* "a* 
foe U see iD Chapler I bow !o coosttuct se probabi]jr)

if*ii l- *l*itv. givetr v: for our pr€sent purposes ir w'll srffice to postu-

ti" i", tt* 
"'p*i'ti, 

,atue oI the vclaciry is equr! Io thQ tim? darivattuc oJ thc

exDecturion valuz oJ Positio'  
( , )  -  111).  t t . r2l

Bquation 1.31
Actually,

velocr$

tells us, then, how to calculato (o) dnecdy ftotn tf'

it is c;stomary to work with momentum (Z = n1')' radlel than

ta'fte podet nne e'ts lhat

fron wnich it foltos in t

frtra - tof n"{*

1"" rf ",=-!"'f'**n11.
Undq the iltesral s'gn rbc vou cs pel d ddtlatit oE o@ taf,tor In a Fo'tua lnd sla! i' otrb rlP

orhtr m rl U @q '@ t mjnb srgtr. dd vou ll Pick up a bodndar! l€In

=-,h I(,!.X)d"
. . ,llxl

(
d
b

q

B

ra

d



tr.34l

tr.35l

We say that the operatorr5 i "represents" posirion, and fte operaror (n/j)(a/ar)''.epresents" momenturl! in quanrum mechanics; ao catculate expectation values we
"sandwich" the appropriaie opemtor berween q,* anit V, and inregrate.

Thafs cute. but whar about other quantities? The facr is. dJl classical dynami_
cal variables can be expressed in terms of positior and momentum. Kinetic energy,

_ 1 . p 2r - rmX-2n

alrd angular momentum is

L : r x f t v : r x p

(.he latter, of course, does nor occw for motion in onc dnnension). To catculate
the expectation vrlue of dr, such quantiry, e(:r, p), we simply replace every p
by (t/i)(a/Ar). hsen fte resulting operator berwe€r V* and V. and integrare:

Sectiofl 1-5: Moflektum 17

I-et me write the expressions for (r) and (p) irr a rlore ruggesnve way:

11.361

For example, the cxpe.ration value of rhe kineric energy is

I,

ii

;
j

il

i
t
1
ii
:l
'l

(") = 
/ 

v.(') '!r ',

ot = 1..(i{).*

ct:-fi!,fi',. {1.371

Fquation 1.36 is a recipe for compuring rhe expectation value of any itynamical
quaftiry, for a particle in state W; it subsumes Equations t_34 and 1_35 as soecial
cdses. lhate ded in r lus.ecr ion ro  ̂ uf .  Uqui lon Ll6 qerm plausibte. gi \en
Born's statistical interpreratio& but the rruth is that rhis reDresenis such a radicallv
new wa\ ol doLng bu.iDe\s ras conrpared wirh ctassicat mecharucsr r}ar ir s a good
rdea to g€t some practice ,lridg il before we come back (in Chaprer 3) and put i1
on a fiImer theoretical foundalion. In the meanrime. if you prefer to rhint of it as
an .uidn, that's fine with me.

"An_ oleraroi is s insmcdon ro dr sorcthiis b 'ne fncn n rh,t folows ir Tbe position
opedo. tels you ro ulripr) by r: |ne noncntnn ope&tor re|s you to Afcz,hirc wnh ru;ped Lo
r  

.  
ud  mu Lpr r  lhe  AU,  oJ  rh r .h |n . .b@L a / t  apeFbF w, l tbeaen\dr l t td /d t .d : fd t .

i)'z/arA),, etcj o. nultiplid (2. i, 12, er,c.), or conbimtions ol !b6e.

: l*n(''i*).,"lQtt, p11
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Problem 1.6 Srhy can't vou alo integration-bv-pans direcdv on the niddle expres

.i." i" fu"i"t i.ZS pul the time derivative over onto x' note that axlat = 0'

and conclude that d(-t)/dt : 0?
FI(

)

FI(

fi

*Problem 1.7 Calc.d'la.re dlpl/!lt' Anwet'

d(p )  /  aY \ t1.381

Lquaoons Lr) lor lhe fiJ<l pan ol I rjr and I 18 t in\lance' of Ebrcofecl \

theorem, \\ hich feLh us !hal ?xp?rtt tion vdlucs ob"v cla':i'al lai \'

Problern 1.8 Suppose you aald a constant yo to the potcntial energy (by 'tonstanf

i -"- i'a.p.^ai', or ' ^ well s r). In clarrical mechanics this doesn'r charge

;"',h.;. il whdt aliottt qudnum mechanicsl sho\ rhJI the wa\e funcnon nicG

uo u t i i .  a.p.na.n, pha"e factor:  e\p{- iyu// / i '  W}at ef iecl  doe'  lh i i  hatc on

tt'e exoectation value of a dvnamical variable?

th(

1.6 TIIE TJNCERTAINTY PRINCIPLE

lnucrne rhat vou re holding oDe end "f a \er) long rope and )ou generare a

"r'i 
tt .r'urOe i, up and Jown rhv-hmicauv (Figxre l 7) b soneone r"l'ed )ou

-p.*iriri *r,.'i i, rnar uave' vou d probablv rtuutr he $ar a Lnlc bir nu-rr\: The

wave isnlt preciselv an}where it's spread out over 50 feet or so On the other

i-4. ii r'"'*rca i'." *t'at its waveten7th is, vou could give him a tasonable

answer: ft loots tite atout 6 feet. By contrast, if you gave the mpe a sudden jerk

Cigu.e r.el, Vou'a g"t u."latively narrow bump traveting down ttle line -This 
time

tt'.ia'rt o'*iio' iwr'"'" Feciselv is the wave?) is a sensible one' and the second

(Wnat is'its wavelengtr?j seems nuttv-it isn't even vagueb periodic' 5o how

. r" t"" ^.i* 
" 

**.f *g$ to il I Of course )ou can dms inrermediJF ca'es in

*r'i.'i 'r'. *i..;" lri'r, iell localized and rhe sa\eleoglh i'J'iflr well dehned

toidro" is uo ine""upulle hade-off here: The more precise a wave's positior is'

ttre l"s' orccise i. irs $avelengdl and wcc ver"a16 A rleorem in l-ourier arul)si'

.uf , . .ul l ,U. ngotou'  Uul forde mome0l I  dD onl)  concemed si th t iequal i ra ' j \e

argumenL

bu
C]

idl

ti(
b'r

-- *#:,tJ3 ",:i,.":""',9il T':l"T [,**ii]:'r.HHltiiii:;:'ili;:"'ifi l" !
tsll-t*'"'*:tj".m;l""i; il*.Tlr:: ;: i jjllj'"'llili'j-T,""Hi 1";
of oonlh,' wiih no very .1e{ pitcn
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Sectiofl 1-6: Th. Un.e/tdibt:| P/ift.iple

FIGURE 1.7: A wave with a (fa y) weliefned u4ueldsth, bit atr il-defncd

FIGURE r.8. A wave with a (fairly) well-defined posito,, bur an'u1de6ftduaue'

This applies, of coune, to da) wave phenomeDoq and hcnc.e in particular to
the quartum mechanicil wave function. Now the wavelength of V is related to the
momentum of the patri,cle by the de Broglie formula:r?

19

t1.391

Thus a spread in ndvelergtt corresponds to a sprcad in aomerrrr4 and our general
obseflation now says that lhe more precisely detennined a panicle's position is,
the less precisely is its rnomentun Quantitatively,

h 2ithp: , :  
x

t1.401

where d, is dre standard deviation in r, and d, is the stan&rd deviation h p.
This is Heisenberg's famous uncertain8 principle. ove'Il prove it in Chapter 3,
but I wanted 1o mention it right away, so you can test it out on tb€ exaaples in
Chapter 2.)

Please understand what lhc uncertainty principle neard: Like posi&on mea
suremc s, momentum measuremenas yield precise answers the "spread" here
refers to the fact drat measurements on idertically prcpared systems do nol yield
identical results. You can, if you want, construct a state such that repeated posi-
tion measurements will be very close together (by naLing V a locarized "spite"),
but you will pay a price: Momertum measurementx on this state will be widely
scattered. Or you can prepare a state wilh a reproducible momentum (by making

I?t'U pou" rr'i" in ao" 
"o*.". 

Mmy audo6 t2ke the de Broslie fomula d m di'u. iron
which thcy th€n dcdu.e lhe s$ciation of norenlln wiLh dre oper,id. (n/i)(a/Jt). ArLrrough dts is
a.onccphrally .icmd approach, itinvolves diverrins-malhetuiicrl conltqtio.s thal l would nther
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V a lons sinusoidal wave), but in that case' position measuremeds wifl be widely

scattere; And, of courser if you're in a rea y bad mood you c'n ffeate a state for

which Dei$er posiUoo nor momentum is well dehned: E4ualion I 40 Is ar rnP4'al

t 1,. aII.l there's no limit on how ,i8 d' and dp can be jusr make V some long

wiggly line with tots of bumps and potholes and no periodic stsucnlla

xProblem 1.9 A particle of rnass ,tr is in the state

v(x' t \ :  Ae oI@" lh)+i t1 '

where A and d are Positive real consta$s.

(a) Find A.

(b) For what potential energy tunction v(jr) does V satisry the Scbddinger

(c) Calculate the expectation values of -r, x2, p' and p2'

(d) Find or and tp. Is their product consistent with the uncertaintv princiPle?

FURTHER PROBLEMS FOR CTIAPIER 1

{b)
(c)

Probl

or -p

la,

o)

* *Probl

thal d

Probl

ta,

{b)

Problem 1.10 Consider the tust 25 digits in the decimal expansior ot 1t (3' l' 4'

1 , 5 , 9 , . . . ) .

ia) If you selected one number at random, from this set, what are the probabfities

of getti4 each of the 10 digits?

(b) Wtat is the most probable digit? ffiat is ilrc mediatr digit? Wllat is the

avenge value?

(c) Find the standard deviation for this distributiotr

Probten 1.11 The needle on a broken car speedometer is ftee to swing' and

bounces perfectly off the PiIIs at either end, so lttat if you give it a flick it js

equally likely to come to resi at any angle between O alld /'

(a) w}tat is ttl€ probability density, p(d)? It,t: p(0)d9 is the probability that

the needle will come to rest betwe€n d ad (d +d0). Glaph p(P) as a function

ol € . ftor.; 1t /2 to 31t /2. (Of course' pdlt of this interval is e{cluded' so p

is zero thele.) Make sure that the tot l probabilitv is I
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Futther Probleus for Chaptet 1

{b) Compure \  .  ,e ' , .  al ld o. for $i i  J i ' r r ibu|on.

(c) Compute (sinA). (cosP). and (coszd).

Problem 1.12 Wc consider tbe sane device as the previous problem. but thjs time
we .r.e interested in the r-coordinate of the needle point that is, the "shadow,"
or "projection," of dre needle on lbc hoflzonml line.

(a) whai is the probability density p(ir)? Graph p(r) as a tunction of:r. from
2r to +2., where r is the length oI the necdlc- Make sure the total prob-

abiiity is t. Itidr: p(r) I' is the probability that the projection lies between
i and (.]r + dx). You know (ftom Problen 1.t1) $e pro6ability that I is in
a given rmge; the question is, wlat interval d-r coffesponds to the inter-
valdq' l

{b) Compute (-!), (i'z). ard o. for {his disaibution. Explain how you could have
obtained lhese iesults from part (c) of Prcblem 1.11.

27

**Problem 1.13 Butron's n€edle. A rc€dle of length I is dropped al random onto a
sheet of paper ruled with paralel hres a distance I apzn. W}lat is lhe probabiliry
that the needle will cross a line? t1,rr Refer io Problem 1.12.

Problen 1.14 Let Par(t) bc the probabiliq? of finding a particle in the range
(d < r < 1,), ar nne t,

(n) Show that

dPot
= l (a,  t )  J(b,  t ) ,

,  i r  / ,a+ '  , ,ao \/(r, rr - :- l q' -- q' - It m \  o t  o r /

What are the units of J (.r . t)'l ConnEnt: J ;s crlled the probability currcnt.
because it tells you the rate at rhich probability is "flowing" pas1 the point
,r. lf Pzr(t) is incre$ing, then more probability is flowiog into the region at
one end than fiows out at the other.

(b) Find the probability currenl fbr the wave funclion in koblem 1.9. (This is
not a very pilhy example, I'm afraid: we'll encountcr nore s bstantial orcs
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*,kProblen 1.15 Suppose you war ed ao descdbe an unstable particle, rhat spon-
taneously disintegrar€s with a "lifeti4e" ?. In that case the toitl Fobabfity of
fnding the particle somewhere should rct be constant, but shodd deqease at
(sa, an exponential rate:

r+@
P(, = I lv,, t 12 d.* : e-4' .

J -o

A crud€ way of achieving th;s result js as folol's. Itr Equarion 1.24 we tacitly
assum€d ihat y (the pote ial energy) is real. That is certainly reasonable, but it
leads to the 'ton$rvarior of probability" enshdned h Equation 1.27- wtat if we
assign to Y ar imaginary pan:

V :  V o  i f ,

wherc y0 is the true potential enelgli and f is a positive real constant?

(a) Show that (in place of Eqoation l-27) we now ger

dP 2r

(b) Solve for P(r), and tud the lifetime of the particle in terD$ of f.

Problem 1.16 Show tlar

:  t  v lv ,d ' -o
tlt J a

for any rwo (normalizable) solutions to the Scbrddinger equatioq tl/l and V2.

Problem 1.17 A particle is rcpresented (at time t : 0) by lhe wave tunction

w , . . - o ) _ [ l ( o t  
' ) ) .  i t - o < )  < + a .

''' -' 
I 0. oi.be.wise.

(a) Deternhe f}le normaliza.iotr co tanr 4-

{b) what is the expectation value of t (ai time t :O)?

(c) What is drc expectatiol value of p (at time t :0)? (Note tbal you carntot

Eer t ftom p: nd\x) /dt. Why not?

{d) Find th€ expectation value of 12.

(e) Find lhe expectation value of p2.

{0 Find rhe uncertainry in r (dJ-

I

l
Ft

o{
ki

(x

It
$

(
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{g) Find the unc€rtainty in

{h) Check that your results

Problem 1.18 Itr gercral, quantum mechanics is rclevant whetr the de Broglie
wavelength of the panicle in question (n/p) is gealer thar the chanct€dstic size
of rle system (/). In themut equilibrium at (Kelvin) tempe&tum I, the avemge
kinetic eneigy of a particle is

! :  :  --r"T

(where ft, is Bolernann's constant), so the typical de Broglie waveleryth is

J3nknT

The purpose of this Foblem is to anticipate which systems wif have to t]e treacd
quantum mechanicaly, a which car safely be desdibed classically.

(a) Solids. The latticr spacing in a tt?ical solid is around d : 0.3 ff Fitrd the
temperature blow whrch the freelS elecrronr in a solid are quantum mechan-
ical. Below what lemperature are the nrrc&i in a solid qualrlrm mechanical?
(Use sodiun as a qical case.),l4oraL The fr€€ electrons in a solid are
atuo]i quanbrm mechanical; the Nclei are almost Eve. quantum mechani-
cal. The sarne goes for liquids (for which dle intemtomic spacing is rcugNy
lhe same), with fhe exception of hetium below 4 K.

(b) Cases. For what tenperatures are the aloEs in an id€al gas at pr€sswe P
quantum mechanical? Hrnt' Use the ideal gas law (Pv: ]V&BT) to deduce
the inremtomic spacing. ,4r.r"r,'r T < (llkB\h2 /3m)3/5 P2l5- Obviously
(for the gas !o show quantum behavior) we wafi nr to be as ruall ai possible,
a\d P as larye as possible. Put ir th€ numbeft for helium at atnospheric
Fessffe. Is hydroger itr outer spac€ (wherc the interatomic spaciry is about
I cm and the temperature is 3 K) quantum rnecharical?

rsln a solid lhe ind €l@Fos m atlach€d lo a p&ticds nrcleus, and ftr dEn the rclevot
sik wo'rld be the sdiN of the aloo- But lhe ontmEst+lelrom e not an ch€4 and tin &cs dD
Flcvad distance is tte laaicc spacin8. Tfiis prcblen perra'ns to the,!rcr elecn'o6.

hathet Ptoblqs fd chapter 1

arc consisient with tlle urcertainty pdnciple.

t1.411


