Student	#			
Student	77			

Physics 101 Test 2 SS02

Question 1

Displacement versus Time

An object moves with a displacement x as shown in the above diagram.

a) What is the amplitude of oscillation?

b) What is the period of an oscillation?

c) What is the angular frequency of the oscillation?
$$= \frac{2\pi}{T} = 1.53 \text{ rad/s}$$

Eiltur d) What is the velocity at t=
$$1.0 \text{ s}$$
? 0,460 m/s or slope = $\frac{0.8}{1.8}$ = 0.44 m/s

e) When is the acceleration zero?

f) What is the phase constant \$\phi\$?

h) When is the Kinetic energy zero?

Question 2

The cross-sectional area of a stream of water becomes smaller as the water falls from a tap.

Explain how this happens and also predict what you would see if water is shot upwards as from a fountain.

As water falls |v| 1 & since Au = const then At 15 water goes up 10-14 " ".

Physics 101 Test 2 SS02

Question 3

A beaker of mass 1.0 kg contains 2.0 kg of water and is sitting on a balance. A 2.0 kg block of aluminium (density 2.70x10³ kg/m³) is suspended from a spring scale and is submerged in the water as shown

$$|F_8 = P_8 V_0' = (1000 \frac{1}{1000} \frac{1}{10000} \frac{1}{10000}$$

d) What is the reading on the balance?

Beaker

$$(m_b + m_w)g + F_g = (3.0k_5)(9.8\frac{m}{52}) + 7.26N$$

Question 4

A 1.0 m diameter tank is filled with water to a depth of 20 m and is open to the atmosphere at the top. The water drains first through a 1.0 cm diameter pipe and then through a 1.5 cm diameter pipe which is open At point (a) $V_2 = ?$ $P_2 = P_0$

a) What is the flow speed in the 1.5 cm diameter pipe?

6.26 m/s

c) What is the height, h, of the water in the sealed vertical tube?

$$P_3 + \frac{1}{2}P \cdot 3 = P + \frac{1}{2}P \cdot 2 \qquad S \approx 4 \cdot 3 = 3 \cdot 3 \cdot 4 \cdot 5 = 2.14 \times 10 \cdot 9 = 2.1$$