LAST NAME:

STUDENT #:

FIRST LETTER OF LAST NAME:

FIRST NAME:

Phys. 101 Section 202 Mid-term exam. Wednesday Feb. 22 2006. Hebb Theatre, 11:00 am – 11:50 am Instructor: J. E. Eldridge

ANSWER BOTH QUESTIONS. PART MARKS ARE SHOWN IN THE MARGIN.

Question	#1	#2	TOTAL
Mark			11

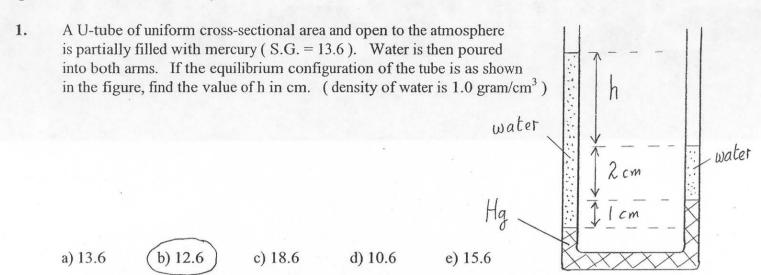
Part marks

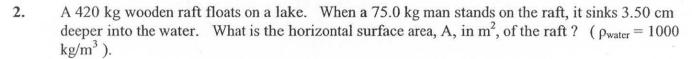
Question 1. A large sealed tank containing sea-water ($\rho = 1025 \text{ kg/m}^3$) to a height of 11.0 m, also contains air above the sea-water at a *gauge* pressure of 3.0 atmospheres. There is a small hole at the bottom of the container, open to atmospheric pressure. Calculate the velocity with which the sea-water leaks from the hole. (Atmospheric pressure = 101.30 kPa) (neglect viscosity)

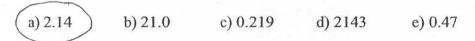
30

Bernoulli's Eq.
$$P + pgh + \frac{1}{2}pV^2 = constant$$

Use either gauge pressure or total pressure on both side


 $ToP: (3*101,300) + (1025*9.81*11) + 0$ using gauge


 $ToP: (3*101,300) + (\frac{1}{2}*1025*V^2)$
 $ToTTOM: 0 + 0 + (\frac{1}{2}*1025*V^2)$


If the hole at the bottom of the container has a radius of 0.20 cm, how long will it take for 1.0 kg of sea-water to leak out? (Keep at least 3 significant figures).

Q_V = Volume flow = AV = $\Pi * (0.2*10^{-2})^2 * 28.44 = 3.574*10$ $M = Mass flow = AVP = 3.574*10^{-4}*1025$ = 0.3663 kg/s ... Time for 1 kg = $\frac{1}{Mass}$ flow = $\frac{1}{0.3663}$

Question 2 MULTIPLE CHOICE (Circle the one correct answer. Each of the five questions is worth 10 marks)

- 3. A simple harmonic oscillator has an amplitude of 5.0 cm, a spring constant of 5.0 N/m, and a maximum speed of 10.0 m/s. What is the speed, in m/s, when it reaches half of the amplitude?
 - (a) 8.7 b) 5.0 c) 7.6 d) 2.5 e) 7.1
- 4. A transverse wave is represented by the function $d = d_0 \sin (1.9x 25t)$, where d, x and t are in cm, m and seconds respectively. Determine the speed of the wave in m/s.
 - a) 3.3 b) 0.25 c) 2.3 d) 13.2 e) 4.0
- 5. Equilibrium is reached in the shortest time when an oscillatory system is
 - a) overdamped b) underdamped c) critically damped