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Physics 509: Intro to Hypothesis 
Testing

Scott Oser
Lecture #13



What is a hypothesis test?
Most of what we have been doing until now has been parameter 
estimation---within the context of a specific model, what parameter 
values are most consistent with our data?

Hypothesis testing addresses the model itself: is your model for the 
data even correct? 

Some terminology:
 simple hypothesis: a hypothesis with no free parameters
   Example: the funny smell in my coffee is cyanide
 compound hypothesis: a hypothesis with one or more free              
  parameters
   Example: “the mass of the star is less than 1M

⊙

  
 “there exists a mass peak indicative of a new particle”     

                      (without specifying the mass)
 test statistic: some function of the measured data that provides a   
  means of discriminating between alternate hypotheses



Bayesian hypothesis testing
As usual, Bayesian analysis is far more straightforward than the 
frequentist version: in Bayesian language, all problems are 
hypothesis tests!  Even parameter estimation amounts to assigning 
a degree of credibility to the proposition “ is between 5 and 5.01”.

 Bayesian hypothesis testing requires you to explicitly specify the 
alternative hypotheses.  This comes about when calculating             
   P(D|I)=P(D|H

1
,I)+P(D|H

2
,I)+P(D|H

3
,I) ...

 Hypothesis testing is more sensitive to priors than parameter 
estimation.  For example, hypothesis testing may involve Occam 
factors, whose values depend on the range and choice of prior.  
(Occam factors do not arise in parameter estimation.)  For 
parameter estimation you can sometimes get away with improper 
(unnormalizable) priors, but not for hypothesis testing. 

P H∣D , I =
P H∣I P D∣H , I 

P D∣I 
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Classical frequentist testing: Type I errors

In frequentist hypothesis 
testing, we construct a test 
statistic from the measured 
data, and use the value of 
that statistic to decide 
whether to accept or reject 
the hypothesis.  The test 
statistic is a lower 
dimensional summary of the 
data that still maintains 
discriminatory power.

We choose some cut value 
on the test statistics t.

Type I error: We reject the 
hypothesis H0 even though 
the hypothesis is true.  
Probability = area on tail = 

Many other cuts possible---two-
sided, non-contiguous, etc.



Classical frequentist testing: Type II error

Type II error: We accept the 
hypothesis H0 even though 
it is false, and instead H1 is 
really true.

Probability = area on tail of 
g(t|H1)= 

Often you choose what 
probability you're willing to 
accept for Type I errors 
(falsely rejecting your 
hypothesis), and then 
choose your cut region to 
minimize .

You have to specify the 
alternate hypothesis if you 
want to determine .

=∫
−∞

t cut

dt g t∣H1
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Significance vs. power
 (the probability of a type I error) gives the significance of a test.  
We say we see a significant effect when the probability is small that 
the default hypothesis (usually called the “null hypothesis”) would 
produce the observed value of the test statistic.  You should always 
specify the significance at which we intend to test the hypothesis 
before taking data.

 (one minus the probability of a type II error) is called the power 
of the test.  A very powerful test has a small chance of wrongly 
accepting the default hypothesis.  If you think of H0, the default 
hypothesis, as the status quo and H1 as a potential new discovery, 
then a good test will have high significance (low chance of 
incorrectly claiming a new discovery) and high power (small chance 
of missing an important discovery).

There is usually a trade-off between significance and power.
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The balance of significance and power

CM colleague: “I saw something in the newspaper about the g-2 
experiment being inconsistent with the Standard Model.  Should I 
take this seriously?”
Me: “I wouldn't get too excited yet.  First of all, it's only a 3 
effect ...”
CM colleague: “Three sigma?!?  In my field, that's considered 
proven beyond any doubt!”

What do you consider a significant result?  And how much should 
care about power?  Where's the correct balance?
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Cost/benefits analysis

Medicine: As long as our medical treatment doesn't do any harm, 
we'd rather approve some useless treatments than to miss a 
potential cure.  So we choose to work at the 95% C.L. when 
evaluating treatments.
<Corollary: 5% of whatever your doctor prescribes doesn't work.>

Condensed matter experimentalist: I'll write 100 papers over my 
career.  Having a result proven wrong looks bad, and shouldn't 
happen more than once in my lifetime.  Since my experiments don't 
cost a lot of time or money to reproduce, I'll work at the 99% C.L.

Particle physicist: If I claim discovery of a new particle, my field is 
going to propose spending $10 billion and 15 years to build a new 
accelerator.  There really isn't any easy way for another group to 
check my result.  The standards of my field therefore require me to 
work at the “5” C.L.
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Legal system analogy

Cost/benefits: it's better to acquit guilty people than to put innocent 
people in jail.  “Innocent until proven guilty”.  (Of course many legal 
systems around the world work on opposite polarity!)

Type I error: we reject the default hypothesis that the defendant is 
guilty and send her to jail, even though in reality she didn't do it.

Type II error: we let the defendant off the hook, even though she 
really is a crook.

US/Canadian systems are supposedly set up to minimize Type I 
errors, but more criminals go free.

In Japan, the conviction rate in criminal trials is 99.8%, so Type II 
errors are very rare.
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Care to draw a cut boundary?
Consider this scatter 
plot.  There are two 
classes of events, and 
you have two test 
statistics x and y that 
you measure for each.

How would you draw a 
cut boundary to 
optimally distinguish 
between the two kinds 
of events?
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The Neyman-Pearson lemma to the rescue
There is a powerful lemma that can answer this question for you:

“The acceptance region giving the highest power (and hence the 
highest signal purity) for a given significance level  (or selection 
efficiency 1-) is a region of the test statistic space t such that:

Here g(t|H
i
) is the probability distribution for the test statistic (which 

may be multi-dimensional) given hypothesis H
i, 
and c is a cut value 

that you can choose so as to get any significance level  you want.

This ratio is called the likelihood ratio.

g t∣H 0

g  t∣H 1
c
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A Neyman-Pearson cut boundary
Using the shape of the 
two probability 
distributions:

I form a ratio, and draw 
a cut contour at a 
particular value of that 
ratio.  In this case it's a 
cool-looking hyperbola.

g x , y∣black ∝exp [−x−52

2⋅52
−
 y−12

2⋅12 ]
g x , y∣red ∝exp [− x−10

2

2⋅42
−
 y−x2

2⋅12 ]
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Don't be so quick to place a cut
Even though there's an 
optimal cut, be careful ... a 
cut may not be the right 
way to approach the 
analysis.  For example, if 
you want to estimate the 
total rate of red events, you 
could count the number of 
red events that survive the 
cuts, and then correct for 
acceptance, but that 
throws away information. 

A better approach would 
be to do an extended ML fit 
for the number of events 
using the known probability 
distributions!
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Interpretation of hypothesis tests

“Comparison of SNO's CC flux with Super-Kamiokande's 
measurement of the ES flux yields a 3.3 excess, providing 
evidence at the 99.96% C.L. that there is a non-electron flavor 
active neutrino component in the solar flux.”

What do you think of this wording, which is only slightly adapted 
from the SNO collaboration's first publication?
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Interpretation of hypothesis tests

“Comparison of SNO's CC flux with Super-Kamiokande's 
measurement of the ES flux yields a 3.3 excess, providing 
evidence at the 99.96% C.L. that there is a non-electron flavor 
active neutrino component in the solar flux.”

In revision 2 of the paper, this was changed to:

“The probability that a downward fluctuation of the Super-
Kamiokande result would produce a SNO result >3.3 is 0.04%.”

Can you explain to me why it was changed?
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What to do when you get a significant effect?
Suppose your colleague comes to you and says “I found this 
interesting 4 effect in our data!” You check the data and see the 
same thing.  Should you call a press conference?



Physics 509 17

What to do when you get a significant effect?
Suppose your colleague comes to you and says “I found this 
interesting 4 effect in our data!” You check the data and see the 
same thing.  Should you call a press conference?

This depends not only on what your colleague has been up to, 
but also on how the data has been handled!

A trillion monkeys typing on a 
trillion typewriters will, sooner or 
later, reproduce the works of 
William Shakespeare.

Don't be a monkey.
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Trials factors
Did your colleague look at just one data distribution, or did he 
look at 1000?  

Was he the only person analyzing the data, or have lots of people 
been mining the same data?

How many tunable parameters were twiddled (choice of which 
data sets to use, which cuts to apply, which data to throw out) 
before he got a significant result?

The underlying issue is called the “trials penalty”.  If you keep 
looking for anomalies, sooner or later you're guaranteed to find 
them, even by accident.

Failure to account for trials penalties is one of the most common 
causes of bad but statistically significant results.
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Why trials factors are hard
It can be really difficult to account for trials factors.  For one thing, 
do you even know how many trials were involved?

Example: 200 medical researchers test 200 drugs.  One 
researcher finds a statistically significant effect at the 99.9% C.L., 
and publishes.  The other 199 find nothing, and publish nothing.  
You never hear of the existence of these other studies.

Chance of one drug giving a false signal: 0.1%. 
Chance that at least one of 199 drugs will give a significant result 
at this level: 18%

Failing to publish null results is not only stupid (publish or perish, 
people!), but downright unethical.  (Next time your advisor tells 
you that your analysis isn't worth publishing, argue back!) 



An aside: gamma-ray astronomy history

In the 1980's, many 
experiments operating at 
very different energy 
ranges detected high-
energy gamma-rays 
from Cygnus X-3.  
Typical statistical 
significance was 3-4, 
and signals were hard to 
pull out---lot of data 
massaging.

But multiple independent 
measurements all 
claimed something, and 
the collective data was 
nicely fit by a consistent 
power law!

So much better 
detectors were built.



Gamma-ray astronomy: the next generation

New detectors were orders of 
magnitude more sensitive.  Yet 
they saw nothing!

It's possible, but highly 
conspiratorial, to imagine that 
Cygnus X-3 “turned off” just as 
the new experiments came on 
line.

A likelier interpretation of the 
earlier results is that they were a 
combination of statistical 
fluctuations and trial factors---
maybe people were so 
convinced that Cygnus was there 
that they kept manipulating their 
data until they “found 
something”.

Since sensitivity of experiments 
also follows a power law, this 
explains seemingly convincing 
energy spectrum.
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Moral
Science is littered with many examples of statistically significant, 
but wrong, results.  Some advice:

 Be wary of data of marginal significance.  
Multiple measurements at 3 are not worth a 
single measurement at 6.
 Distrust analyses that aren't blind.  
 Consider trials factors carefully, and quiz others 
about their own trials factors.
 Remember the following aphorism: “You get a 
3 result about half the time.”
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My favourite PhD thesis
SEARCHES FOR NEW PHYSICS IN DIPHOTON EVENTS IN p-

pbar COLLISIONS AT √s=1.8 TEV    
David A. Toback

University of Chicago, 1997

“We have searched a sample of 85 pb-1 of p-pbar collisions for 
events with two central photons and anomalous production of 
missing transverse energy, jets, charged leptons (e, , and ),         
b-quarks and photons.  We find good agreement with Standard 
Model expectations, with the possible exception of one event that 
sits on the tail of the missing E

T
 distribution as well has having a 

high-E
T
 central electron and a high-E

T
 electromagnetic cluster.”



The infamous event
The event in question was:    eemissing transverse energy

The expected number of such events in the data set from Standard 
Model processes is 1 X 10-6

Supersymmetry could produce such events through the decay of 
heavy supersymmetric particles decaying into electrons, photons, 
and undetected neutral supersymmetric particles.

This is a one in a million event!

Dave's conclusion: “The candidate event is tantalizing.  Perhaps it 
is a hint of physics beyond the Standard Model.  Then again it may 
just be one of the rare Standard Model events that could show up in 
1012 interactions.  Only more data will tell.”

It was never seen again.
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The optional stopping problem
An example from Gregory, Section 7.4:

Theory prediction: The fraction of nearby stars that are of the same 
spectral class as the Sun (G class) is f=0.1

Observation: Out of N=102 stars, 5 were G class

How unlikely is this?

One way to view this is as a binomial outcome.  Gregory argues:

P-value=2×∑
m=0

5

p m∣N , f =2×∑
m=0

5
N !

m! N−m!
f m1−f N−m=0.10

(Factor of two supposedly because it's a 2-sided test: theory could be either too high or 
too low.)
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The optional stopping problem as a binomial
This is actually not quite correct.  The correct way to calculate 
this is to calculate P(m|N,f), sort them from most probable to 
least probable, then add up the probabilities of all outcomes 
which are more probable than m=5.

m Probability Cumulative Prob.
10 0.131 0.131
9 0.127 0.259

11 0.122 0.381
8 0.110 0.490

12 0.103 0.593
7 0.083 0.676

13 0.079 0.756
14 0.056 0.811
6 0.055 0.866

15 0.036 0.902
5 0.030 0.933

16 0.022 0.955
4 0.014 0.969

We expected to see 10.2 G-type stars 
on average, but saw only 5.  How 
unlikely is that?

P=90.2% to get a value more likely that 
m=5.  In other words, ~10% chance to 
get a result as unlikely as m=5.

This is not strong evidence against the 
theory.
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The optional stopping problem as neg. binom.
The uppity observer comes along and says: “You got it all 
wrong!  My observing plan was to keep observing until I saw 
m=5 G-type stars, then to stop.  The random variable isn't m, 
it's N---the total number of stars observed.  You should be 
using a negative binomial distribution to model this!”

 

This is actually not a good way to calculate P: it assumes that 
the probability of observing too many stars is equal to the 
probability of observing too few.  In reality the negative binomial 
distribution is not that symmetric.

P-value=2× ∑
m=102

∞

p N∣m, f =2× ∑
m=102

∞

N−1m−1  f m 1−f N−m=0.043
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The optional stopping problem as neg. binom.
A correct calculation of a negative binomial distribution gives:

N Probability Cumulative Prob.
41 0.0206 0.021
40 0.0206 0.041
42 0.0205 0.062
39 0.0205 0.082
43 0.0204 0.103
38 0.0204 0.123
44 0.0203 0.143
37 0.0202 0.164
45 0.0201 0.184

... ... ...
12 0.0016 0.975

102 0.0015 0.977

The probability of getting a value of N as 
unlikely as N=102, or more unlikely, is 
2.5%.

This is rather different than just adding up 
the probability of N≥102 and multiplying 
by 2, which was 4.3%.

In any case, the chance probability is less 
than 5%---data seems to rule out theory 
at the 95% C.L.
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Optional stopping: a paradox?
Everyone agrees we saw 5 of 102 G-type stars, but we get 
different answers as for the probability of this outcome 
depending on which model for data collection (binomial or 
negative binomial) is assumed.

The interpretation depends not just on the data, but on the 
observer's intent while taking the data!

What if the observer had started out planning to observe 200 
stars, but after observing 3 of 64 suddenly ran out of money, 
and decided to instead observe until she had seen 5 G-type 
stars?  Which model should you use?

Paradox doesn't arise in Bayesian analysis, which gives the 
same answer for either the binomial or the negative binomial 
assumption.
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