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Last Time

We discussed various descriptive statistics (mean, variance, 
mode, etc.), and studied a few of the most common probability 
distributions:

 Gaussian (normal) distribution
 Cauchy/Lorentz/Breit-Wigner distribution
 Binomial distribution
 Multinomial distribution
 Negative binomial distribution

TODAY
 More common distributions: Poisson, exponential, 2

 Methods for manipulating and deriving new PDFs
 Marginalizing and projecting multi-dimensional PDFs
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Poisson Distribution

Suppose that some event happens at random times with a 
constant rate R (probability per unit time).  (For example, 
supernova explosions.)

If we wait a time interval dt, then the probability of the event 
occurring is R dt.  If dt is very small, then there is negligible 
probability of the event occuring twice in any given time interval.

We can therefore divide any time interval of length T into N=T/dt 
subintervals.  In each subinterval an event either occurs or 
doesn't occur.  The total number of events occurring therefore 
follows a binomial distribution:

P k∣p=R dt , N =
N !

k ! N−k !
pk 1−pN−k
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Poisson Distribution
Let dt=T/N → 0, so that N goes to infinity.  Then

P k∣p=R dt , N =limN∞

N !
k !N−k !

RT /N k 1−RT /N N−k

P k∣p=R dt , N =limN∞

N k

k !  RTN 
k

1−RT /N N 1−RT /N −k ¿

 =RT k
e−RT

k !
≡
e−


k

k !

P(k|) is called the Poisson distribution.  It is the probability 
of seeing k events that happen randomly at constant rate R 
within a time interval of length T.  

From the derivation, it's clear that the binomial distribution 
approaches a Poisson distribution when p is very small.

 is the mean number of events expected in interval T. 
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Properties of the Poisson distribution

Mean = 

Variance = 

Approaches Gaussian 
distribution when  
gets large.

Note that in this case, 
the standard 
deviation is in fact 
equal to sqrt(N).
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Poisson vs. Gaussian distribution
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The sum of two Poisson variables is Poisson
Here we will consider the sum of two independent Poisson 

variables X and Y.  If the mean number of expected events 
of each type are A and B, we naturally would expect that 
the sum will be a Poisson with mean A+B.

Let Z=X+Y.  Consider P(X,Y):

P X ,Y =P X P Y =
e−A AX

X !
e−BBY

Y !
=
e−AB AXBY

X !Y !

To find P(Z), sum P(X,Y) over all (X,Y) satisfying X+Y=Z

P Z =∑
X=0

Z e− AB AX BZ−X 

X !Z−X !
=
e− AB

Z! ∑
X=0

Z Z ! AXBZ−X 

X !Z−X !

P Z =
e−AB

Z !
ABZ        (by the binomial theorem)
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Why do I labour the point?
First, calculating the PDF for a function of two other random 

variables is good practice.

More importantly, I want you to develop some intuition of 
how these distributions work.  The sum of two Gaussians 
is a Gaussian, even if they have different means, RMS.

Sum of two Poissons is a Poisson, even if means are 
different.

What about the sum of two binomial random variables?
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Sum of two binomials is binomial only if p
1
=p

2

I hope it's intuitively obvious that the number of heads from 
N coin flips plus the number from M coin flips is equivalent 
to the number from N+M coin flips, if you flip identical 
coins.

But what if p
1
≠p

2
?  Consider the mean and variance of the 

sum:

mean=Np1Mp2                   variance=Np11−p1Mp21−p2

This doesn't have the generic form of the mean and variance 
formulas for a binomial distribution, unless p

1
=p

2
.

Contrast with the case of summing two Poissons:

mean=12                   variance=12
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Things you might model with a Poisson 
 Number of supernovas occurring per century
 Number of Higgs particles produced in a detector during a 

collision
 As an approximation for a binomial distribution where N is 

large and Np is small.
 What about the number of people dying in traffic accidents 

each day in Vancouver?

WARNING: the number of events in a histogram bin often 
follows a Poisson distribution.  When that number is small, 
a Gaussian distribution is a poor approximation to the 
Poisson.  Beware of statistical tools that assume Gaussian 
errors when the number of events in a bin is small (e.g. a    
2  fit to a histogram)!
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An exponential distribution
Consider for example the distribution of measured lifetimes 

for a decaying particle:

P t =
1

e−t /                    both t ,0

mean: 〈t 〉=                         RMS: =

HW question: Is the sum of two random variables that 
follow exponential distributions itself exponential?
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The 2 distribution
Suppose that you generate N random numbers from a 

normal distribution with =0, =1:  Z
1
 ... Z

N
.

Let X be the sum of the squared variables:

X=∑
i=1

N

Z i
2

The variable X follows a 2 distribution with N degrees of 
freedom:

P 2∣N =
2−N /2

N /2


2

N−2/2 e−2/2

Recall that (N) = (N-1)! if N is an integer.
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Properties of the 2 distribution
A 2 distribution has 

mean=N, but 
variance=2N.

This makes it relatively 
easy to estimate 
probabilities on the tail of 
a 2 distribution.
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Properties of the 2 distribution
Since 2 is a sum of N 
independent and 
identical random 
variables, it is true 
that it tends to be 
Gaussian in the limit 
of large N (central 
limit theorem) ...

But the quantity 
sqrt(22) is actually 
much more 
Gaussian, as the 
plots to the left show!  
It has mean of 
sqrt(2N-1) and unit 
variance.
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 Calculating a 2 tail probability
You're sitting in a talk, and someone shows a dubious-

looking fit, and claims that the 2  for the fit is 70 for 50 
degrees of freedom.  Can you work out in your head how 
likely it is to get that large of a 2 by chance?
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 Calculating a 2 tail probability
You're sitting in a talk, and someone shows a dubious-

looking fit, and claims that the 2  for the fit is 70 for 50 
degrees of freedom.  Can you work out in your head how 
likely it is to get that large of a 2 by chance?

Estimate 1: Mean should be 50, and RMS is 
sqrt(2N)=sqrt(100)=10, so this is a 2 fluctuation.  For a 
normal distribution, the probability content above +2is 
2.3%

More accurate estimate: sqrt(22) = sqrt(140)=11.83.  Mean 
should be sqrt(2N-1)=9.95.  This is really more like a 1.88 
fluctuation. 

It is good practice to always report the P value, whether 
good or bad.
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Uses of the 2 distribution
The dominant use of the 2 statistics is for least squares 

fitting.

The “best fit” values of the parameters  are those that 
minimize the 2.  

If there are m free parameters, and the deviation of the 
measured points from the model follows Gaussian 
distributions, then this statistic should be a 2 with N-m 
degrees of freedom.  More on this later.

2 is also used to test the goodness of the fit—Pearson's 
test.

2=∑
i=1

N

 yi−f xi∣ i

2
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Limitations of the 2 distribution
The 2 distribution is 

based on the 
assumption of 
Gaussian errors.

Beware of using it in 
cases where this 
doesn't apply.

To the left, the black 
line is the fit while the 
red is the true parent 
distribution.
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Joint PDFs
We've already seen a few examples of multi-dimensional 

probability distributions:  P(x,y), where X and Y are two 
random variables.

These have the obvious interpretation that
P(x,y) dx dy = probability that X is the range x to x+dx while 

simultaneously Y is in the range y to y+dy.  This can 
trivially be extended to multiple variables, or to the case 
where one or more variables are discrete and not 
continuous.

Normalization condition still applies:

∫dxiP xi=1
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Marginalization vs. projection
Often we will want to determine the PDF for just one 

variable without regards to the value of the other variables. 
 The process of eliminating unwanted parameters from the 
PDF is called marginalization.

P x =∫dy P x , y 

If P(x,y) is properly normalized, then so is P(x).

Marginalization should very careful be distinguished from 
projection, in which you calculate the distribution of x for fixed 
y:

P x∣y =
P x , y 

∫dx P x , y
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PDFs for functions of random variables
Marginalization is related to calculating the PDF of some 

function of random variables whose distributions are 
known.

Suppose you know the PDFs for two variables X and Y, and 
you then want to calculate the PDF for some function 
Z=f(X,Y).

Basic idea: for all values of Z, 
determine the region for which    
Z < f < Z+dZ.  Then integrate the 
probability over this region to get 
the probability for Z < f < Z+dZ:

P Z dZ=∫
R

P X ,Y dX dY
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Change of variables: 1D
Suppose we have the probability distribution P(x).  We want 
to instead parameterize the problem by some other 
parameter y, where y=f(x).  How do we get P(y)?

P(x) dx = probability that X is in range x to x+dx

This range of X maps to some range of Y: y to y+dy.  Assume 
for now a 1-to-1 mapping.  Probability of X being in the 
specified range must equal the probability of Y being in the 
mapped range.

P x dx=P  y dy=P  f xdy

P  y=P x∣dxdy∣=P x∣
1

f ' x∣=P  f
−1
 y∣ 1

f '  f −1
 y ∣
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Change of variables: 1D example
We are told that the magnitude distribution for a group of 

stars follows P(m) = B exp(m/A) over the range 0<m<10. 
Magnitude relates to luminosity by

m=−2.5 log10L
What is P(L)?
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Change of variables: 1D example
We are told that the magnitude distribution for a group of 

stars follows P(m) = B exp(m/A) over the range 0<m<10. 
Magnitude relates to luminosity by

m=−2.5 log10L
What is P(L)?

Start by solving  for L(m) = 10-0.4m.  This will be a lot easier if we 
convert this to L=exp(-0.4*ln(10)*m).  Equivalently:

Now need to equate P(m) dm = P(L) dL, and figure out the 
relation between dm and dL.  So we really need to calculate 
dm/dL. 

m=−
2.5

ln10
ln L

dm
dL

=−
2.5

ln 10
1
L
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Change of variables: 1D example

P L=∣dmdL∣P Lm=
2.5

ln 10
1
L
B⋅exp − 2.5

ln 10
ln L
A 

Top: P(m), simulated and 
theory
Bottom: P(L), simulated and 
theory

For discussion: when you 
assign probabilities, how do 
you choose the 
parametrization you use?
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Change of variables: multi-dimensional
To generalize to multi-dimensional PDFs, just apply a little 

calculus:

∫
R

f x , y dx dy=∫
R'

f [x u , v  , y u , v ]∣∂x , y ∂u , v ∣dudv
This gives us a rule relating multi-dim PDFs after a change 

of variables:

P x , y dx dy=P [x u , v  , y u , v ]∣∂x , y ∂u , v ∣dudv
Recall that the last term is the Jacobian:

∣∂x , y∂u , v ∣=det 
∂ x
∂u

∂ x
∂ v

∂ y
∂u

∂ y
∂ v


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Change of variables: multi-dim example

Consider a 2D uniform distribution inside a square -1<x<1,-1<y<1.

Let u=x2 and v=xy.  Calculate the joint pdf g(u,v).
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Change of variables: multi-dim example
Consider a 2D uniform distribution inside a square -1<x<1,-1<y<1.

Let u=x2 and v=xy.  Calculate the joint pdf g(u,v).

First, note that f(x,y) = 1/4.  Now calculate the Jacobian:

∣∂x , y∂u , v ∣=∣det 
∂ x
∂u

∂ x
∂ v

∂ y
∂u

∂ y
∂ v

∣=∣det 
1

2u1/2 0

−
v
u

1

u1/2 ∣= 1
2u

gu , v =
1
4

1
2u

But what is the region of validity for this pdf?
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Change of variables: multi-dim example

The square region in the X,Y plane 
maps to the parabolic region in the U,V 
plane.

gu , v =
1

8u

for any u,v in the 
shaded region.

Note that a lot of 
the complexity of 
the PDF is in the 
shape of the 
boundary region---
for example, 
marginalized PDF 
G(u) is not simply 
proportional to 1/u.

But is this PDF properly normalized?
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Change of variables: multi-dim normalization

∫
0

1

du∫
−u

u

dv
1

8u
=∫

0

1

du
2u
8u

=
1
2

Normalization is wrong!  Why?  Mapping is not 1-to-1.

For any given value of u, there are two possible values of x 
that map to that.  This doubles the PDF.

In reality we need to keep track of how many different 
regions map to the same part of parameter space.
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Change of variables: use in fitting when 
dealing with limits of parameters

Sometimes in statistics problems the PDF only has physical meaning for 
certain values of the parameters.  For example, if fitting for the mass of an 
object, you may want to require that the answer be positive.

Many minimizers run into trouble at fit boundaries, because they want to 
evaluate derivatives but can't.

Some fitters get around this with a change of variables.  If a parameter X is 
restricted to the range (a,b), try doing your internal calculations using: 

Y=arcsin 2 X−ab−a
−1 

The internal parameter Y is then nice and can take on any value.  
Unfortunately the fit is nonlinear and becomes more subject to numerical 
roundoff.
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