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Clever Hans

Ask Hans the horse to add any two numbers, and he tapped his hoof 
the correct number of time!

He could also 
tell time, work 
a calendar, and 
spell words. 

His German 
spelling was 
much better 
than mine.
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Was Hans a fraud?

Seemingly not.  Hans answered questions 
correctly even when his trainer was not 
in the room!

Psychologist Oskar Pfungst made a very 
important discovery: if no one in the room
knew the correct answer to the question being asked of Hans, Hans didn't 
know the answer either!

Hans was apparently picking up on subtle cues given by the questioners!  
This is the “Clever Hans” effect.

Pfungst studied and identified a number of subtle non-verbal cues that the 
participants would give off.  He then tried to purposely suppress these clues, 
doing his best not to tip the answers to Hans.  He failed---the cues were 
involuntary, and for most people completely unconscious.

Hans was clever, but not in the way that people thought!
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Medical applications

Medicine has long recognized the importance
 of “blind analyses”.  Given that placebo effects 
do happen, and that patients interact with their doctors, just 
as Hans interacted with his questioners, the gold standard in 
medicine is the “double blind” study:

Neither the physician or the patient should know whether the 
patient is receiving a real treatment or a placebo.

These days you'd probably have trouble getting a non-blind 
drug study published!

But surely experiments on inanimate objects shouldn't have 
such worries.  Should they?

   ?



6

Gregor Mendel: scientific fraud?

Gregor Mendel is the father of 
genetics, having discovered the laws 
of genetic inheritance.

But his published data is very 
curious: data fits his model with 
2/dof = 41.6/84, which has P<7x10-5

Possible explanations:
1) Did Mendel publish only his best 
data, throwing out results that 
disagreed with his model?
2) After he formulated his theory, did 
he just continue to take data until the 
agreement was excellent, only then 
deciding to stop?
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Do the physical sciences have to worry about 
this?

Mendel's plants presumably didn't know they were part of an 
experiment.  Neither do electrons.  Remember: medical trials are 
double blind because both the experimenter and the subject can 
be unconsciously influenced.

There's no reason to think that physicists or astronomers are any 
less human than anyone else.  It's not hard at all to think of ways 
that even with the best of intentions you can inadvertently 
produce a biased result.

Are there any examples of this happening in the literature of the 
physical sciences?
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Fairbank's fractional charge measurement
In the early 1980's Fairbank et al did 
an experiment to look for fractional 
charges, with charges of ±1/3e.  While 
quarks with fractional charges exist, 
they are supposed to be always 
confined inside bound states with 
integer charge.

To test this, superconducting niobium 
spheres were levitated in a magnetic 
field in a modern version of the 
Millikan oil-drop experiment, resulting 
in the data seen here:

Phys. Rev. Lett. 46, 967 - 970 (1981)
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Fairbank's fractional charge measurement

After this publication, Luis Alvarez suggested that the 
experimenters should redo the experiment, this time adding 
unknown random numbers to the charges, so that they did not 
know the true value of the charge until the analysis was complete. 
This was intended to prevent selection bias.

This procedure was tried on a new set of data.  After the analysis 
was finished, the values of the random numbers were revealed 
and subtracted from the measured charges.

Results after unblinding showed no quantization at ±1/3e:

Results from a blind analysis disagreed with the previous 
publications!  To date, there is no credible evidence for free 
fractional charges.
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Speed of light measurements

What if anything is wrong with this picture?

Cohen & DuMond, Rev. Mod. Phys 37:537 (1965)
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Speed of light measurements

Did you notice that:

1) Data points tend 
to agree with the 
previous data point 
better than they 
agree with the true 
value?

2) The existence of 
several data points 
(1930-1940) that 
are several 
standard deviations 
off the true value?
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The split A
2
 peak

The A
2
 is a meson 

produced in
 
- + p → p + M+ M-

It was reported that the 
mass peak was split in 
two, with very high 
significance.  Lots of 
theorists got very 
interested in explaining 
why.

Kienzle et al., EMS 1968 proceedings
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The split A
2
 peak

It turns out that one of the 
data cuts applied was to 
throw out whole runs in 
which the split was not 
seen.   

Given the complexity of 
the detector, it was 
always possible to find 
some reason to throw out 
any run, and practically 
speaking the presence or 
absence of the split peak 
wound up being used as 
a selection criterion!



PDG history plots: “follow the leader”
History plots for 
measurements of 
four fundamental 
particle properties

Hypothesis that 
each measurement 
is scattered with 
normal errors 
around the prior 
averages: 
2 = 131.2/83 d.o.f.

Hypothesis that 
each is scattered 
around the eventual 
world average:
2 = 249.7/82 d.o.f.
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What is a blind analysis?

Blind analysis is a technique for avoiding biases in data analysis.  

In a blind analysis, you analyze the data in such a way that you 
don't know what the final answer is going to be until the very last 
step, so you can't “tune” your result to get any particular answer.

In a blind analysis, you commit ahead of time to publish the result 
you get when you remove the blindness.

Blind analysis doesn't mean:
 you never look at the data
 you can't correct a mistake if you find one
 the analysis is necessarily correct---it's merely blind!
 conversely, a non-blind analysis doesn't necessarily give the    
wrong answer, but it does leave open the risk of bias.
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Dunnington's blind e/m analysis

In 1932 Frank Dunnington published one of the earliest blind analyses in 
physics.  He was trying to measure the e/m ratio for the electron---there 
were several previous and widely discrepant values for this quantity.

He asked his machinist to build part of his apparatus at an unknown 
angle close to 340o and not to tell him the true value of the angle.  This 
angle was one of the quantities in the formula for the e/m value.

Dunnington completed his analysis, got his “final” answer, and only then 
went back and measured the true value of the angle, putting it in place of 
the nominal 340o.  He then published the result.

“It is also desirable to emphasize the importance of the human equation in 
accurate measurements such as these.  It is easier than is generally realized 
to unconsciously work toward a certain value. One cannot, of course, alter or 
change natural phenomena (for example, the location of the current minimum 
in the present experiment), but one can, for instance, seek for those 
corrections and refinements which shift the results in the desired direction.”

Phys. Rev. 43:404 (1932)
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Mechanisms that produce bias

What are some of the ways you can bias a result?
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Mechanisms that produce bias: cut tuning

What are some of the ways you can bias a result?

1) Cut selection: normally you apply some selection criteria 
(“cuts”) to discard uninteresting data or events, in order to 
enhance your sensitivity to the signal.  If you can directly observe 
the effect of these cuts on your final answer, you may be inclined 
to choose cut values that affect the answer in a subtle way.

This can be very easy to do, and it isn't always obvious that 
you've done it.



Igor's Awesome Analysis

Igor is a graduate student in a big particle 
physics experiment.  He wants to graduate 
this century.  

His data set consists of ~2500 events.  For each event, the 
detector measured the energy and the values of 10 quantities 
X

1
 ... X

10
 associated with the event.  Each of these quantities can 

go from 0 to 1, and is distributed uniformly for normal events.

A theorist tells him that there ought to be a new particle between 
4-6 GeV.  Igor studies a bunch of Monte Carlo events for this 
model, and concludes that signal events are slightly more likely to 
have small values of X

i 
than background.  The Monte Carlo tells 

him that the optimal cut is X
i
<~0.9.  This in principle will remove 

10% of the background but only a little signal.  But his MC isn't 
good enough to tell him whether 0.88 or 0.92 is a better cut than 
0.90.
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Igor's Automated Search

Since Monte Carlo can't exactly pin down what
cut values Igor ought to use for each
variable (0.88?  0.91?), he decides to
optimize them on the data.

He applies each cut one-by-one, searching over all cut values 
between 0.88-0.92.  For each cut, he chooses a cut boundary that 
gives the largest signal significance between 4-6 GeV.  After all, 
he doesn't want to miss an important discovery.
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Igor's Before And After Energy Spectra

It worked!  In the raw data, 
there was no clear signal.  But 
just as the Monte Carlo said, 
applying cuts on the X

i
 

enhanced the signal, 
eventually reaching >3 with 
all cuts applied.

All cut values lie with 0.88-
0.92, which is the range that 
Monte Carlo said was optimal. 
 The cuts are scarcely tuned 
at all!

Igor says: 
“Master will be pleased ...”
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Master was not pleased.

Master was not pleased.  
He used Monte Carlo to 
simulate the effect of Igor's 
procedure on 1000 fake 
data sets containing only 
background.

As expected, the raw data 
had an average signal 
significance of 0.

Igor's cut tuning on average 
produced a 1.1 
significance, and increased 
the chance of a 3 result 
from 0.2% to 4.5%.

Tiny amounts of tuning 
can produce big effects!
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Mechanisms that produce bias: rare events

Here's data from an experiment to 
look for K→e decays.  These 
decays are in principle forbidden 
by lepton flavour conservation.

If they do happen, they would 
produce an invariant mass around 
498 MeV and a low value of P

T
2

We expect zero events.  Given 
the data, where do you draw the 
signal box?

PRL 70:1049 (1993)
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Mechanisms that produce bias: rare events

The people who did this 
experiment were aware of two 
potential sources of bias:

1) drawing the box after having 
seen the data to avoid events
2) you find more events than 
expected in the box, and examine 
them one-by-one---maybe you 
decide that one track you thought 
was an electron looks atypical for 
an electron, so you decide to toss 
it.

They chose to do a “hidden box” 
analysis.  They defined a box near 
the signal region that was “off 
limits”.  No one could look at the 
events in that region.



25

Mechanisms that produce bias: stop signs

“If you don't like the weather, just wait a bit.”

When do you stop taking data?  If you use the 
measured values to decide when to stop, you risk 
stopping as soon as the data fluctuates in the 
direction you expect it to.  This will bias the results.

This applies to data analysis as well.  Consider the following:
 you complete your measurement, and get a very strange result
 you spend a couple of days checking your analysis, and you find a code 
bug, which you fix
 after fixing the bug, your measurement agrees with your prediction

If your initial result had agreed with expectations, would you have ever 
found that code bug?

Knowing the final answer can never tell you whether your result is correct 
or not! 
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Case Study: The Einstein-de Haas effect

Aspiring experimentalist W.J. de Haas: luckiest lab
assistant ever

M∝L

Is ferromagnetism caused by current loops from orbiting electrons?

L=mvr

M=I  r2= e
2r /v   r2=12 evr

M
L
=
e
2m



Case Study: The Einstein-de Haas effect

M
L
= e2m  1.02±0.10

Basic idea: hit an iron cylinder with a 
magnetic field to magnetize it, look for any 
twisting due to acquired angular 
momentum.

Their measurement (1915):



Case Study: The Einstein-de Haas effect

M
L
= e2m  1.02±0.10

A problem: as experimenters try to reduce systematic error after 
another, all the measurements start converging on 2.0!

This is the correct value.  Explanation of why g=2 had to wait for 
Dirac's equation.

What happened? This was a difficult experiment at the time, with 
lots of difficulties with stray magnetic fields, alignment, and 
magnetic saturation effects.

Einstein and de Haas knew of these things, but thought they had 
them under control once their result agreed with (wrong) theory. 

Agrees with theory!  Einstein moves on to other things 
(eg. discovering GR)

Other researchers pursue these measurements as a way 
to more precisely measure e/m
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What to do when you get a significant effect?
Suppose your colleague comes to you and says “I found this 
interesting 5 effect in our data!” You check the data and see the 
same thing.  Should you call a press conference?
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What to do when you get a significant effect?
Suppose your colleague comes to you and says “I found this 
interesting 5 effect in our data!” You check the data and see the 
same thing.  Should you call a press conference?

This depends not only on what your colleague has been up to, 
but also on how the data has been handled!

A trillion monkeys typing on a 
trillion typewriters will, sooner or 
later, reproduce the works of 
William Shakespeare.

Don't be a monkey.
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Trials factors
Did your colleague look at just one data distribution, or did she 
look at 1000?  

Was she the only person analyzing the data, or have lots of 
people been mining the same data?

How many tunable parameters were twiddled (choice of which 
data sets to use, which cuts to apply, which data to throw out) 
before she got a significant result?

The underlying issue is called the “trials penalty”.  If you keep 
looking for anomalies, sooner or later you're guaranteed to find 
them, even by accident.

Failure to account for trials penalties is one of the most common 
causes of bad but statistically significant results.
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Why trials factors are hard
It can be really difficult to account for trials factors.  For one thing, 
do you even know how many trials were involved?

Example: 200 medical researchers test 200 drugs.  One 
researcher finds a statistically significant effect at the 99.9% C.L., 
and publishes.  The other 199 find nothing, and publish nothing.  
You never hear of the existence of these other studies.

Chance of one drug giving a false signal: 0.1%. 
Chance that at least one of 199 drugs will give a significant result 
at this level: 18%

Failing to publish null results is not only stupid (publish or perish, 
people!), but downright dangerous.  
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An aside: gamma-ray astronomy history

In the 1980's, many 
experiments operating at 
very different energy 
ranges detected high-
energy gamma-rays 
from Cygnus X-3.  
Typical statistical 
significance was 3-4, 
and signals were hard to 
pull out---lot of data 
massaging.

But multiple independent 
measurements all 
claimed something, and 
the collective data was 
nicely fit by a consistent 
power law!

So much better 
detectors were built.



Gamma-ray astronomy: the next generation

New detectors were orders of 
magnitude more sensitive.  
Using blind analyses they saw 
nothing!

It's possible, but highly 
conspiratorial, to imagine that 
Cygnus X-3 “turned off” just as 
the new experiments came on 
line.

A likelier interpretation of the 
earlier results is that they were a 
combination of statistical 
fluctuations and trial factors---
maybe people were so 
convinced that Cygnus was there 
that they kept manipulating their 
data until they “found 
something”.

Since sensitivity of experiments 
also follows a power law, this 
explains seemingly convincing 
energy spectrum.

A. Borione et al, PRD 55:1714 (1997)
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Moral
Science is littered with many examples of statistically significant, 
but wrong, results.  Some advice:

 Be wary of data of marginal significance.  
Multiple measurements at 3 are not worth a 
single measurement at 6.
 Think about possible biases in the analysis, 
especially if the analysis wasn't blind.  
 Consider trials factors carefully, and quiz others 
about their own trials factors.
 Remember the following aphorism: “You get a 
3 result about half the time.”



Hidden offset analyses

In many analyses, you might be able to hide the 
value of some parameter of the analysis.  
(Remember how Dunnington hid the machined 
angle in his apparatus for measuring the 
electron's e/m ratio?) Consider whether there is 
any element whose value you could hide.

Example: if you're doing the Cavendish 
experiment to measure G, have someone 
unconnected with the experiment measure the 
masses of the test masses for you and seal the 
result in an envelope.  She then adds a random 
number to the measured mass and reports the 
“shifted” mass to you.  You use that in your 
analysis.  As a last step, you open the envelope, 
and replace the shifted mass with the correct 
mass, and calculate the final answer without 
changing anything else. Figure from 

PRL 85 (2000) 2869-2872
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Hidden fitting offsets
Do you fit your data?

One easy blindness scheme is to insert hidden offsets into your 
fitter.  For example, one analysis of high-Z supernovae set up their 
fitter to fit for the cosmological parameters +X and +Y, 
instead of just fitting for and 

†.

Perhaps an even better approach would be to include a hidden ± 
sign in the fit, so you no longer can tell which direction the fit 
parameter changes if you vary something:

Here both the value of X and the choice of sign are hidden.

†Conley et al, Ap.J. 644 (2006) 1

M , fitted=1−1 ×M ,trueX



Data division

A very easy way to do a blind 
analysis is to use “data 
division”.  Divide your data set 
into a small portion which is 
100% unblind.  You can do 
whatever you want to it.  
Once you're happy with the 
analysis on the unblind 
portion, you apply it to the rest 
of the data (the “blind 
portion”).  

It's important to separately 
report the results from the 
unblind and blind data 
portions in your publication.  
Ideally you should base your 
final answer only on the blind 
data, since the unblind portion 
could be biased.  

←This experiment 
thought it had 
discovered a new 
particle in heavy 
ion collisions ...

←Or they did until 
they tried data 
division on a new 
data set, and 
compared the open 
and blind results, 
getting this!

Ganz et al, Phys. 
Lett B 389:4-12 
(1996)



Adding fake events
Sometimes you can effectively add “fake” 
events to your data which will hide the answer.  
It's very important that the fake data be 
indistinguishable from your real data. 

The SNO experiment counted neutrons 
knocked loose by solar neutrinos. 

Muons also knock loose neutrons.  Normally we 
cut these out.  This gives an opportunity for 
blindness ...

n



Normal cut removes all events within X seconds after muon

Modified cut leaves an unknown fraction                           of these events in the data set

t=0 t=X

?
The blinded muon cut inserts an unknown number of extra 
neutrons into our data!
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Hiding events

In addition to adding events, you can hide events.  

The simplest version is to add a cut that removes an unknown fraction of 
your signal events.  

It's important that this be done in a way that makes it impossible to 
estimate the fraction by looking at the data.  (For example, if your 
detector records calibration signals every 5 seconds, make sure these 
events aren't hidden, since their rate is known!)

SNO applied this on top of adding events to make the blindness two-
directional (unknown number of background events added, and unknown 
number of real events hidden).

Adding an unknown number of events, then removing a different 
unknown number, gave double blindness.  
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When blind analyses go wrong

If you do blind analyses, it's possible that something is going to go 
wrong:

1) You look in your signal box, see many more events than you 
expected, and realize that there is a background you forgot about.

2) You remove a hidden offset, and the final answer is physically 
absurd because you forgot to apply some correction.

3) A poorly constructed blind analysis could potentially bias the 
result in one direction.  Be especially careful in cases where the 
analysts know the sign but not the magnitude of a shift in the 
data.

What do you do if you get egg on your face?
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Suck it up!

Blind analysis techniques do not prevent all mistakes.

Nor does it require you to publish a wrong result!

If you attempt a blind analysis and something goes wrong, you 
should:
 fully disclose your entire procedure, including what your “blind” 
answer was, and why you think it is in error.  You will have more 
credibility admitting to a mistake and showing how you fixed it 
than hiding your dirty laundry and not doing a blind analysis at all.
 report your corrected answer, making clear that corrections 
were applied after blindness was removed, and so the final 
answer is not “blind”
 have a written procedure in place in advance describing what 
checks you will do after blindness is removed, and what actions 
you might take as a result of those checks



43

Sociology of blind analyses

I have seen more fighting and acrimony about blind analyses than 
almost any topic in physics.  Blind analyses, although gaining 
rapidly in popularity, are not yet universally applied or even 
supported.  Some objections I've heard to blind analyses:

1) “Doing a blind analysis slows down the data analysis.”  
Certainly this can happen, and partly by design.  A careful blind 
analysis strategy can minimize delays, but a lot of the benefit of a 
blind analysis is that it purposefully forces analysts to slow down 
and check everything. If you're not supposed to “patch” mistakes 
after the fact, you spend more time making sure you get things 
right the first time, and will catch more mistakes.  Here's a good 
strategy: list every possible check that you would do if you did an 
analysis and got an absurd or unexpected answer. Now carry out 
all of those same checks before you know the final answer.
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Sociology of blind analyses

2) “If the analysis is blind, how will I know if I got the right 
answer?”  
This objection, once uttered aloud, often ends any debate about 
whether to do blind analyses!

3) “I'm going to make my full data set publicly available, so others 
can check my results. Therefore I don't need to do a blind 
analysis.”
I have heard this one from some CMBR people, for example.  The 
objection doesn't hold---first of all, if you're being biased by a 
theoretical expectation, then the whole community can be subject 
to the same bias. Why can't everyone be biased? Furthermore, it 
sounds a lot like “I don't need to be very careful with my own 
analysis, because I can count on other people to find and correct 
my mistakes.” (!)



Sociology of blind analyses

4) “Doing a blind analysis will limit my ability to perform sanity 
checks on the data, since I can't look at some of it.”
The extent to which this is true depends on how the blind analysis 
is implemented.  The best blind analyses hide only the final 
answer and let you look at anything else you want in the data. 
Often a more careful design for blindness will help. Of course 
there may be a trade-off.

5) “Blindness isn't necessary, because the data is what it is.  
Psychological motives don't enter into it.”
History and common sense prove otherwise.

6) “By having multiple independent analyses, we get most of the 
benefits of blind analyses anyway.”
Independent analyses are good for finding errors.  But what 
happens when the first analysis is wrong, and the second 
considers itself finished when it gets the same answer as the 
first?
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Conclusions

1. Scientists are human.  Everyone potentially has biases.

2. The history of physics and astronomy is littered with the 
wreckage of biased analyses: incorrect results, missed 
opportunities, and wasted effort.

3. “Blind analysis” is a general principle for avoiding bias in a 
result, and can be applied in almost any context.  

4. We should be teaching our students, starting at the 
undergraduate level, about techniques for blind analysis.

5. My personal viewpoint: We should move towards a scientific 
culture in which blind analysis is the default, and non-blind 
analyses should have to justify why they should be considered for 
publication.
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Further reading

Selectivity and Discord, by Allan Franklin, University of Pittsburgh Press, 2002.

How Experiments End, by Peter Louis Galison, University of Chicago Press, 
1987.

“Blind analysis”, P.F. Harrison, J. Phys G: Nucl. Part. Phys. 28  2679-2691, 
2002.

“Benefits of Blind Analysis Techniques”, Joel G. Heinrich, University of 
Pennsylvania, CDF internal note CDF/MEMO/STATISTICS/PUBLIC/6576
http://www-cdf.fnal.gov/publications/cdf6576_blind.pdf

“Blind Analysis in Nuclear and Particle Physics”, Joshua R. Klein & Aaron 
Roodman, Ann. Rev. Nucl. and Part. Systems, Vol. 55, Issue 1, 
pp. 141-163, 2006.
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