

PHYS 319

● Things to do before next week's lab
● Whirlwind tour of the MSP430 CPU and its

assembly language
● Activity 1.

● Read manual for Lab 2 and your OS setup guide
then prepare your computer (assembler and
flasher), or plan to use the lab computers and read
their guide, before coming to the lab!

● Get a PHAS ID from Henn 205 if you don't have
one.

● Read up on binary and hexadecimal if you're not
familiar with them.

Before next week's lab:

Registers:

PC – program counter

SP – stack pointer

SR – status register

CG2 – constant generator

R4-R15 -general purpose registers

blink.asm:

.include "msp430g2553.inc"

 org 0xc000
start:
;mov.w #0x5a80, &WDTCTL
 mov.w #WDTPW|WDTHOLD, &WDTCTL
 mov.b #0x41, &P1DIR
 mov.w #0x01, r8
repeat:
 mov.b r8, &P1OUT
 xor.b #0x41, r8
 mov.w #40000, r9
waiter:
 dec r9
 jnz waiter
 jmp repeat

 org 0xfffe
 dw start ; set reset vector to 'init' label

blink.asm:

.include "msp430g2553.inc"

 org 0xc000
start:
;mov.w #0x5a80, &WDTCTL
 mov.w #WDTPW|WDTHOLD, &WDTCTL
 mov.b #0x41, &P1DIR
 mov.w #0x01, r8
repeat:
 mov.b r8, &P1OUT
 xor.b #0x41, r8
 mov.w #40000, r9
waiter:
 dec r9
 jnz waiter
 jmp repeat

 org 0xfffe
 dw start ; set reset vector to 'init' label

Assembler Commands:

• .include

• Example: .include "msp430g2553.inc"

• Instructs the assembler to include the contents
of the file msp430g2553.inc into the program.
This particular file contains definitions of
registers and other names, but any other file,
for example containing part of the program,
can be included

blink.asm:

.include "msp430g2553.inc"

 org 0xc000
start:
;mov.w #0x5a80, &WDTCTL
 mov.w #WDTPW|WDTHOLD, &WDTCTL
 mov.b #0x41, &P1DIR
 mov.w #0x01, r8
repeat:
 mov.b r8, &P1OUT
 xor.b #0x41, r8
 mov.w #40000, r9
waiter:
 dec r9
 jnz waiter
 jmp repeat

 org 0xfffe
 dw start ; set reset vector to 'init' label

Assembler Commands:

• org

• Example org 0xc000

• To define the address where the next lines of
the program or data are going to be stored.

• Example org 0xFFFE

• To store the address pointing to where the
program should start after a reset

Memory map

• Interrupt vector table ffe0 - ffff

• Flash memory (program) c000 –ffdf (16 kB)

• Information memory (flash) 1000 -10ff

• RAM (variables) 0200 - 03ff (512 bytes)

• 16-bit peripherals (registers) 0100-10ff

• 8-bit peripherals (port registers) 0010-00ff

• Special function registers 0000-000f

blink.asm:

.include "msp430g2553.inc"

 org 0xc000
start:
;mov.w #0x5a80, &WDTCTL
 mov.w #WDTPW|WDTHOLD, &WDTCTL
 mov.b #0x41, &P1DIR
 mov.w #0x01, r8
repeat:
 mov.b r8, &P1OUT
 xor.b #0x41, r8
 mov.w #40000, r9
waiter:
 dec r9
 jnz waiter
 jmp repeat

 org 0xfffe
 dw start ; set reset vector to 'init' label

Assembler Commands:

;mov.w

lines beginning with ; are comments
and are ignored by the assembler

blink.asm:

.include "msp430g2553.inc"

 org 0xc000
start:
;mov.w #0x5a80, &WDTCTL
 mov.w #WDTPW|WDTHOLD, &WDTCTL
 mov.b #0x41, &P1DIR
 mov.w #0x01, r8
repeat:
 mov.b r8, &P1OUT
 xor.b #0x41, r8
 mov.w #40000, r9
waiter:
 dec r9
 jnz waiter
 jmp repeat

 org 0xfffe
 dw start ; set reset vector to 'init' label

Assembler Commands:

• dw
• Define word

• Example:

dw start
• Will put a 16 bit number into the next memory

location
• Word start is defined as hexadecimal number

c000 (beginning of the flash memory) because it
is a label immediately following the command
org 0xc000

Assembler Commands:

• equ

• definition of a name for a number

• Example

P1OUT equ 0x0021
• This command is used in the file

msp430g2553.inc to call hexadecimal number
0021 “P1OUT”

.include "msp430g2553.inc"

 org 0xc000
start:
;mov.w #0x5a80, &WDTCTL
 mov.w #WDTPW|WDTHOLD, &WDTCTL
 mov.b #0x41, &P1DIR
 mov.w #0x01, r8
repeat:
 mov.b r8, &P1OUT
 xor.b #0x41, r8
 mov.w #40000, r9
waiter:
 dec r9
 jnz waiter
 jmp repeat

 org 0xfffe
 dw start ; set reset vector to 'init' label

blink.asm:

Microprocessor Commands:

• Move Byte

• Example:

mov.b #0x41, &P1DIR

• P1DIR is an address of the port control register
defined in the file msp430g2553.inc

Microprocessor Commands:

• bis.w

• Set a bit in a 16 bit register

• Example:

bis.w #CPUOFF,SR

• Sets a particular bit in the Status Register

• The symbol CPUOFF must be defined earlier (eg in
msp430g2553.inc)

Status Register bits

• N Negative bit. This bit is set when the result of a byte or
word operation is negative and cleared when the result is
not negative.

– Word operation: N is set to the value of bit 15 of the result

– Byte operation: N is set to the value of bit 7 of the result

• Z Zero bit. This bit is set when the result of a byte or word
operation is 0 and cleared when the result is not 0.

• C Carry bit. This bit is set when the result of a byte or word
operation produced a carry and cleared when no carry
occurred.

•

V Overflow bit. Set if an operation overflows the signed
variable range

••

Microprocessor Commands:
Two operand instructions:
mov.b, mov - move a byte or a word from src to dst
add.b/add – add source and destination
addc.b/addc - add with carry
sub.b/sub - subtract byte or word
subc.b/subc - subtract with carry
cmp.b/cmp - compare (dst-src), discard result
dadd.b/dadd - decimal (BCD) addition
bit.b/bit – test bits in destination, set status bits
bic.b/bic – clear bits in destination, dst &= ~src
bis.b/bis – set bits in destination, dst |= src
xor.b/xor – dst ^= src
and.b/and – dst &= src

Microprocessor Commands:
Two operand instructions:
mov.b, mov - move a byte or a word from src to dst
add.b/add – add source and destination
addc.b/addc - add with carry
sub.b/sub - subtract byte or word
subc.b/subc - subtract with carry
cmp.b/cmp - compare (dst-src), discard result
dadd.b/dadd - decimal (BCD) addition
bit.b/bit – test bits in destination, set status bits
bic.b/bic – clear bits in destination, dst &= ~src
bis.b/bis – set bits in destination, dst |= src
xor.b/xor – dst ^= src
and.b/and – dst &= src

eg, xor:
src: 01100101
dst: 11010001

dst: 10110100

Microprocessor Commands:

Jump instructions and program flow
JEQ/JZ Jump to label if zero bit is set
JNE/JNZ Jump to label if zero bit is reset
JC Jump to label if carry bit is set
JNC Jump to label if carry bit is reset
JN Jump to label if negative bit is set
JGE Jump to label if (N .XOR. V) = 0
JL Jump to label if (N .XOR. V) = 1
JMP Jump to label

Microprocessor Commands:
Single operand instructions:
rrc.b/rrc – rotate right through carry
swpb - swap bytes
rra.b/rra – rotate right arithmetic
sxt – sign extend byte to word
push.b/push – push value onto stack
call – push PC on stack and move source to PC
reti – return from interrupt – pop SR, then pop PC

Microprocessor Commands:

That's it! That is all the instructions the CPU understands.

In the manual, there are some additional instructions, referred
to as 'emulated instructions' which are really just convenient
abbreviations.

blink.asm:

.include "msp430g2553.inc"

 org 0xc000
start:
;mov.w #0x5a80, &WDTCTL
 mov.w #WDTPW|WDTHOLD, &WDTCTL
 mov.b #0x41, &P1DIR
 mov.w #0x01, r8
repeat:
 mov.b r8, &P1OUT
 xor.b #0x41, r8
 mov.w #40000, r9
waiter:
 dec r9
 jnz waiter
 jmp repeat

 org 0xfffe
 dw start ; set reset vector to 'init' label

Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register direct. Register contents are operand

01/1 Indexed mode X(Rn) Indexed mode. The operand is in memory at address Rn+X.

01/1 Symbolic mode ADDR Symbolic mode. (PC + X) points to the operand. X is stored in the

next word. Indexed mode X(PC) is used.

01/1 Absolute mode &ADDR Absolute Mode. The word following the instruction contains the absolute

address. X is stored in the next word. Indexed mode X(SR) is used.

10/− Indirect register mode @Rn Register indirect. Rn is used as a pointer to the operand. (same as 0(Rn))

11/− Indirect autoincrement @Rn+ Register autoincrment. Rn is used as a pointer to the operand. Rn is incremented

afterwards by 1 for .B instructions and by 2 for .W instructions.

11/− Immediate mode #N Immediate Mode. The word following the instruction contains the immediate

constant N. Indirect autoincrementmode @PC+ is used.

Addressing Modes

• Immediate mode

• Syntax: #N

• The word following the instruction contains
the immediate constant N.

• Examples:

mov.b #01000001b, & P1DIR

• Source address can use this format (destination cannot)

mov.b #65, & P1DIR

mov.b #0x41, & P1DIR

Addressing Modes

• Absolute mode

• Syntax: & ADDR

• The word following the instruction contains
the absolute address.

• Example:

mov.b #11110111b, & P1DIR

The destination address uses this format

Addressing Modes

• Register mode

• Syntax Rn

• Register contents are operand

• Rn can be PC, SP, SR, CG2, R4 ...R16

• Example

bis.w #CPUOFF,SR

Destination address is the CPU status register
SR

Addressing Modes

• Indexed mode

• Syntax X(Rn)

• Memory location pointed to by Rn+X are operand

• Rn can be PC, SP, SR, CG2, R4 ...R16

Example

mov #27,4(R4)

Destination address is the memory location 4 bytes
after the address pointed to by R4.

Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register direct. Register contents are operand

01/1 Indexed mode X(Rn) Indexed mode. The operand is in memory at address Rn+X.

01/1 Symbolic mode ADDR Symbolic mode. (PC + X) points to the operand. X is stored in the

next word. Indexed mode X(PC) is used.

01/1 Absolute mode &ADDR Absolute Mode. The word following the instruction contains the absolute

address. X is stored in the next word. Indexed mode X(SR) is used.

10/− Indirect register mode @Rn Register indirect. Rn is used as a pointer to the operand. (same as 0(Rn))

11/− Indirect autoincrement @Rn+ Register autoincrment. Rn is used as a pointer to the operand. Rn is incremented

afterwards by 1 for .B instructions and by 2 for .W instructions.

11/− Immediate mode #N Immediate Mode. The word following the instruction contains the immediate

constant N. Indirect autoincrementmode @PC+ is used.

General Purpose Input/Output (GPIO) Ports

Several registers control the configuration and operation of sets of pins.
In these registers, the different bits in the register control different pins.

P1DIR – sets the pin directions. Bit = 0 = input, Bit = 1 = output.

P1IN – input register. When configured for input, this register contains
the digital input values

P1OUT – output register. When configured for output, writing to this
register sets the outputs

P1REN – pullup/pulldown enable. Bit = 1, enable resistor (P1OUT
sets whether pullup or down).

P1SEL/P1SEL2 – alternate function enable – both 0 means GPIO.

General Purpose Input/Output (GPIO) Ports

Several registers control the configuration and operation of sets of pins.
In these registers, the different bits in the register control different pins.

P1DIR – sets the pin directions. Bit = 0 = input, Bit = 1 = output.

P1IN – input register. When configured for input, this register contains
the digital input values

P1OUT – output register. When configured for output, writing to this
register sets the outputs

P1REN – pullup/pulldown enable. Bit = 1, enable resistor (P1OUT
sets whether pullup or down).

P1SEL/P1SEL2 – alternate function enable – both 0 means GPIO.

eg setting P1DIR = 3 (00000011b) configures pins P1.0 and P1.1 as outputs, P1.2-P1.7 as inputs

Activity 1
• Write commands which will configure all pins of port

1 as inputs, and move the value from port 1 to register
R7. Finally, write the binary number which will be in the 16 bit
register R7 after these operations assuming that all 8
pins of port 1 were connected to 3V.

• Port P1 registers:

• P1REN ; Port P1 resistor enable

• P1SEL ; Port P1 selection

• P1DIR ; Port P1 direction

• P1OUT ; Port P1 output

• P1IN ; Port P1 input

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

