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Motivation
What does a theory of quantum gravity look like?
Gravity is often described in different situations as: 
1. A coarse-grained/effective theory
2. A microscopic unitary quantum theory
Gravity is Entropic:
From this perspective, gravity is best understood as a thermodynamic 
theory. Entropy generates spacetime, but seems agnostic about what it is 
purified by. 
• Black hole thermodynamics [Bekenstein and Hawking]
• Einstein equations as equation of state [Jacobson]
• Gravity as entropic force [Verlinde]
• Extremal surfaces from entanglement entropy [Ryu-Takayangi; Hubeny, Rangamani, 

Takayangi]
• AdS geometry as a MERA entanglement network [Swingle]
• AdS Rindler horizons and ER =EPR  [Van Raamsdonk; Maldacena, Susskind]
• Linearized Einstein equations from EE [Lashkari, McDermott, Faulkner, Hartman; Myers, Van 

Raamsdonk]



Gravity is Entropic:
From this perspective, gravity is thermodynamic and entropy 
generates spacetime, but seems agnostic about what it is purified by. 
Gravity is Pure:
From the other perspective, the microscopic structure of 
entanglement purification is important.
• Through AdS/CFT we have confirmed that gravity can be described by a 

microscopic unitary theory
• EFT in curved space-time: vacuum state is a particular entangled state
• Eternal AdS black hole described by particular TFD state

Which of these perspectives is correct? Is there a middle ground between 
the two perspectives?



Firewalls
Resolving the tension between these two perspectives isn’t 
simply a question about quantum gravity at the Planck scale:

The black hole information paradox and the question of 
firewalls hinges on which of these two perspectives we 
believe:
• The reliance on EFT and the belief that the vacuum has a 

fixed structure seems to lead inevitably to firewalls
• A smooth vacuum state at the horizon requires fields to be 

in the local Rindler state at the horizon, with entanglement 
between the outgoing and ingoing Hawking partners.

• On the other hand, unitarity requires that the outgoing 
Hawking radiation is generically entangled with other 
degrees of freedom in the early radiation.



• The incompatibility of mutual entanglements that 
leads to the firewall can be resolved if one tracks 
entanglement, but not its purification 

• This entropic approach builds a smooth geometry by 
constructing the interior Hawking modes from 
whatever the exterior Hawking mode happens to be 
entangled with.

• This leads to constructions like the proposal of 
Papadodimas and Raju for building non-linear (state 
dependent) interior operators and the EPR=ER proposal 
of Maldacena and Susskind



While black holes are an invaluable pressure test for our ideas about quantum 
gravity, they also add to the confusion about what we are doing.
• Life is confusing enough without immediately confronting, for example, 

whether quantum gravity can accommodate violations of quantum 
mechanics 

• While this may drive straight to the heart of the issue,  perhaps something 
can be learned by less invasive surgery of what we think we know.

It seems valuable to explore the tension between entropy and purity in the 
absence of black holes.

We might want to ask:
• Does some measure of entropy determine the geometry of spacetime?
• If so, what is the precise entropy measure in the boundary field theory?
• What does this entropy tell us about holographic RG and the emergence of 

the radial direction?

I will assuredly answer none of these questions today.
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The classic results of black hole thermodynamics suggest we should 
associate an entropy to black hole horizons (or any killing horizons):

Natural to then ask: can we associate a notion of entropy to any choice of 
(generalized) bulk area?

• And, if so, what is the meaning of this entropy in the boundary field theory?

Conjecture [Bianchi, Myers]: 
“In a theory of quantum gravity, for any sufficiently large region in a 
smooth background spacetime, one may consider the entanglement 
entropy between the degrees of freedom describing the given region
with those describing its complement… the leading contribution from this 
short-range entanglement will be given precisely by the BH formula.”



What is its precise manifestation in the boundary field theory?
First, some broad intuition:
1) The radial direction in the bulk is associated to a holographic RG flow

The area of some closed surface then should correspond to an 
entanglement between UV and IR degrees of freedom rather than 
some particular spatial region of the boundary.

UV

IR



2) The bulk geometry is perhaps associated to a MERA lattice [Swingle]
For a CFT, one can efficiently represent certain low-energy states by a 
lattice of unitary operators. Swingle has suggested that the structure 
of this lattice for the vacuum state of a CFT mimics the coarse structure 
of AdS.

• Lattice points deeper in the bulk encode IR entanglement in the CFT

• When we cut out a region of the MERA lattice, we 
remove a number of unitary operators proportional to 
the area of the cut.

• The number of possible states that fills in the lattice is 
proportional to the area of the cut

• However, the subspace spanned by these states does 
not necessarily form a tensor factor of the Hilbert space

• Suggests we don’t think of this entropy as an 
entanglement entropy, but some other entropy measure



3) RT: While the surface area describes the EE, the 
density matrix describes the interior region
The exterior of some closed bulk surface should 
then be described by a collection of density 
matrices whose minimal surfaces are—at most—
tangent to the bulk surface

This intuition is equally supported by the MERA 
picture:
• The RT surfaces are given by cuts of the 

exterior region of the MERA lattice, which 
contains enough information to reconstruct 
the density matrices for the boundary regions



How do we assign an entropy to this collection of density matrices?

We will make use of Strong Subadditivity of Entropy:

𝐼𝐼1 𝐼𝐼2𝛿𝛿𝑥𝑥
𝐼𝐼3



The RHS of the bound we have established generally has boundary terms 
that give a UV divergence. When we periodically identify the boundary, we 
can subtract the intersection term between the first and last interval.
The RHS becomes UV finite and is approximately equal to the area of the 
‘outer envelope’. We define this sum of entropies to be the differential 
entropy:



• The discrete formula for differential entropy we have written on the 
previous slide has a beautiful continuum limit:

• By choosing 𝑅𝑅 𝑥𝑥 so that the minimal surface is just tangent to S for every 
x, it is then a simple proof to show that:
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We build on the work of Headrick, Myers, and Wien and Myers, Rao, and 
Sugishita to extend the definition of differential entropy to arbitrary* 
closed surfaces in generalized gravitational theories in higher dimensions.

First, some definitions:
Consider:

1. A gravitational theory with a generalized entropy functional which is an 
integrated local density

2. A spacelike slice Σ of a static background

3. A closed, codimension 1 (dimension d-1), smooth hypersurface A on Σ
4. A 1-dimensional foliation of 𝐴𝐴 by closed, smooth “loops” 𝐾𝐾(𝜆𝜆) of 

codimension 1 on A (ie. of dimension d-2)



A



𝐾𝐾(𝜆𝜆)

𝐾𝐾(𝜆𝜆𝑖𝑖𝑖)
𝐾𝐾(𝜆𝜆𝑖𝑖𝑖) …

𝐾𝐾(𝜆𝜆𝑖𝑖𝑖𝑖)



To each lo0p  𝐾𝐾(𝜆𝜆) we associate the boundary anchored extremal surface 
𝑀𝑀(𝜆𝜆) that is tangent to A at 𝐾𝐾(𝜆𝜆):

𝑀𝑀(𝜆𝜆)



The boundary anchored extremal surface 𝑀𝑀(𝜆𝜆) meets the boundary of 
the bulk geometry along two loops 𝐵𝐵𝐿𝐿(𝜆𝜆) and 𝐵𝐵𝑅𝑅(𝜆𝜆) (generically) 
enclosing a ring-shaped region: 

𝐵𝐵𝐿𝐿(𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆)



• We denote the generalized entropy associated with 𝑀𝑀(𝜆𝜆) by 

where it is labeled instead by its boundary conditions.
• Given a one parameter collection of boundary intervals {𝐵𝐵𝐿𝐿(𝜆𝜆),𝐵𝐵𝑅𝑅(𝜆𝜆)} , 

define:

𝐵𝐵𝐿𝐿(𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆) 𝐵𝐵𝐿𝐿(𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆)𝐵𝐵𝐿𝐿(𝜆𝜆 + 𝑑𝑑𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆 + 𝑑𝑑𝜆𝜆) 𝐵𝐵𝐿𝐿(𝜆𝜆 + 𝑑𝑑𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆 + 𝑑𝑑𝜆𝜆)



We will show that the above defined generalization of differential entropy 
reconstructs the generalized area/entropy of A: 

for an arbitrary* smooth surface in a generalized theory of gravity.

Differential Entropy



Proof

𝐵𝐵𝐿𝐿(𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆)𝐵𝐵𝐿𝐿(𝜆𝜆 + 𝑑𝑑𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆 + 𝑑𝑑𝜆𝜆)

A

𝐾𝐾(𝜆𝜆)

𝐾𝐾(𝜆𝜆 + 𝑑𝑑𝜆𝜆)

�𝐾𝐾 (𝜆𝜆)

First note that up to second order in 𝑑𝑑𝑑𝑑 we can rewrite 

because we have just infinitesimally perturbed about an extremal solution



𝐵𝐵𝐿𝐿(𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆)𝐵𝐵𝐿𝐿(𝜆𝜆 + 𝑑𝑑𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆 + 𝑑𝑑𝜆𝜆)

A

𝐾𝐾(𝜆𝜆)

𝐾𝐾(𝜆𝜆 + 𝑑𝑑𝜆𝜆)

�𝐾𝐾 (𝜆𝜆)

Thus we can rewrite the differential entropy as



𝐵𝐵𝐿𝐿(𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆)𝐵𝐵𝐿𝐿(𝜆𝜆 + 𝑑𝑑𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆 + 𝑑𝑑𝜆𝜆)

A

𝐾𝐾(𝜆𝜆)

𝐾𝐾(𝜆𝜆 + 𝑑𝑑𝜆𝜆)

�𝐾𝐾 (𝜆𝜆)

These two terms are just the differential generalized area between 𝐾𝐾(𝜆𝜆)
and 𝐾𝐾(𝜆𝜆 + 𝑑𝑑𝜆𝜆)



𝐵𝐵𝐿𝐿(𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆)𝐵𝐵𝐿𝐿(𝜆𝜆 + 𝑑𝑑𝜆𝜆) 𝐵𝐵𝑅𝑅(𝜆𝜆 + 𝑑𝑑𝜆𝜆)

A

𝐾𝐾(𝜆𝜆)

𝐾𝐾(𝜆𝜆 + 𝑑𝑑𝜆𝜆)

�𝐾𝐾 (𝜆𝜆)

These two terms are just a total derivative:



So long as the total derivative does not produce boundary terms, the 
integrated quantity is exactly the generalized area:



Issues and subtleties
1) Degenerate foliations

Foliating surfaces by ‘loops’ often necessitates points 
where this foliation degenerates (ie. even for  the 
simple case of a fully rotationally invariant sphere in 
empty AdS).

As long as the foliation only degenerates at finitely 
many 𝜆𝜆, the differential entropy still gives an integral 
of the infinitesimal generalized area + boundary term.  

𝐵𝐵𝐿𝐿(𝜆𝜆) 𝐵𝐵𝐿𝐿(𝜆𝜆) 𝐵𝐵𝐿𝐿(𝜆𝜆)



At the degeneration points, it may appear that a 
caustic will develop as the radius of the loop goes to 
zero size.

However, the extremal surfaces have vanishing 
extrinsic curvature. As the sectional curvature in one 
direction grows large, the surface is driven away in the 
other directions.

At the point where the extremal surface is tangent at a 
point, it approaches a double-cover of the minimal 
surface of the extremal surface with only one 
boundary.



2) Boundary terms
• If the parametization is non-degenerate (for 

example a torus), then the boundary terms will 
necessarily cancel.

• If the parametization degenerates, cancellation is no 
longer automatic, although the procedure can still 
work.
• Simplest where cancellation protected by 

symmetry, ie. choose a foliation that respects the 
Z2 symmetry for the case of the sphere

• Otherwise, must choose degeneration points such 
that boundary terms cancel. For two degeneration 
points, this is always possible as the boundary term 
at a degeneration point is a continuous function

• NB: The boundary term is then generically 
sensitive to the choice of UV cutoff



3) Non-minimal Surfaces

• Our proof so far has only been a geometric construction and we have not 
given a boundary interpretation for                                                           .

• From RT, we know that  for a boundary region B

But, in our case we have no guarantee that
1. 𝑀𝑀(𝜆𝜆) is the minimal surface
2. 𝐵𝐵(𝜆𝜆) forms a well-defined boundary region

• (1) is certainly problematic near degeneration points:



• There will also be a phase transition between the minimal surfaces we use 
and the disconnected surface that encloses the complementary region on 
the boundary

• This phase transition happens when the loop on the surface is roughly the 
size of the AdS radius.



OPEN QUESTIONS 
(AND WILD SPECULATION)



1) Is there an understanding of non-minimal 
surfaces in the boundary?

We are forced to conclude that spatial entanglement seems insufficient to 
understand differential entropy as a boundary quantity. 

This leaves two possible choices:

1. Conservative and less interesting:
Differential entropy is only useful for a coarse reconstruction of bulk 
geometry. In general, we can only calculate an approximate area for 
surfaces and only measure features larger than the AdS scale.

2. Interesting, but more speculative:
There is a (not yet known) field theory entropy we can associate to non-
minmal extremal surfaces. 



• Being more speculative for now, there are two possibilities worth pursuing:

1. They are also EE, but not purely spatial EE
1. There has already been evidence given that there is a geometric interpretation 

to the entropy of factorizing CFT degrees of freedom in internal space, as 
opposed to spatially:

• Entanglement between non-interacting CFTs in thermofield double is described by black hole 
geometry

• More generally, entanglement between two interacting CFTs: [Mollabashi, Shiba, Takayanagi]

2. This perspective has support from work on Entwinement [Balasubramanian, Czech, 
Chowdhury, de Boer]

• Quotient of AdS3 by       described by state in        twisted-sector of orbifold T4N/SN CFT.  
• Long geodesics (not globally minimal curves)  can be understood as descending from 

minimal geodesics in the covering space



• Can think of encoding the entanglement of degrees of freedom in a spatial 
region as well as a factorization of the internal space (although this picture is 
slightly complicated by the gauge constraint)



2) What is the role of non-spatially organized 
entanglement?

• Even if non-spatial entanglement doesn’t play a role in understanding non-
minimal surfaces, does it nevertheless play a role in understanding the sub-
AdS-scale residual entropy?
• Sub-AdS-scale locality is subtly encoded in matrix degrees of freedom. It would be 

very surprising to be able to faithfully describe bulk geometry without probing this 
entanglement.



2. Non-minimal surfaces require a more general entropy measure
Recall the conjectured correspondence between Causal Holographic 
Information and boundary one-point entropy. 
Is there a different entropy measure that is suitable for our surfaces?

• If non-minimal surfaces require a different entropy measure, should we be 
basing the construction on a different measure altogether? [cf. Hubeny]

• Differential entropy constructs surfaces differentially. It’s important that 
entropies are described locally in the bulk by an action priniciple. 

• It’s not at all clear how other measures that aren’t determined locally in the bulk 
could fit into this paradigm. 

3) What about other entropy measures?



4) Is there a clean UV/IR separation in gauge 
theories?

• Consider AdS3:
Instead of considering the RT surface for fixed dirichlet boundary conditions in 
the UV, we can consider fixing two conditions at one end:

• This type of boundary condition differentiates the minimal/nonminimal
surfaces on the same region.

• Is there a corresponding specification of UV boundary conditions in the CFT 
that identifies the different surfaces? 



• A natural identification of boundary conditions would be the boundary choice 
in assigning a local algebra to a region in gauge theory. 
[Casini, Huerta, Rosabal; Donnelly; Tachikawa, Ohmori]

• A reasonable expectation is that this choice should only affect UV divergent 
contributions and should be irrelevant for determining the IR behaviour. Is this 
in fact the case?



5) Is there a more covariant formulation?
The necessity of loops is not clear:

• Might seem more natural to tile surface by tangent RT surfaces for spherical 
regions, but this doesn’t seem to work. 
• Our understanding of how differential entropy works in higher dimensions still 

reduces to the one-dimensional picture with a one-parameter foliation with a well-
defined ordering principle

• A covariant formulation should allow us to foliate by more general classes of 
RT surfaces. Does this framework exist?



6) Is there a relation to integral geometry?
• Integral geometry studies measures on geometric spaces that are 

invaraint/equivariant under the action of the symmetry group 
• Concerned with integral transforms
• Interesting connections with probability theory and stochastic geometry

• Two classic results of integral geometry:
1. Radon Transform (cf. Penrose Transform and twistors):

Let                                    be a compactly-supported continuous function. The Radon 
Transform of f is then a function from the space of straight lines in       :

2. Crofton Formula:
The area of a plane curve  can be written as an integral 
of the intersection number over the space of lines:

Czech, 
Lamprou, 
JS



• The Radon transform and the Crofton formula can be naturally extended to 
hyperbolic space:
• Let Γ be the space of planes in     , with the unique invariant measure. Then:

• This appears distinct from the differential entropy formula, but they are in 
fact equivalent: Differential Entropy = Crofton Formula
• We can write the invariant measure on the space of planes as

(This is just the metric on Lorentzian de Siter space.) 
• Then we can first integrate over the interval size coordinates 

at each point (with support starting at          ) to give the 
differential entropy formula:



• Does this connection generalize to higher dimensions?
• Differential entropy is a construction that generates area/entropy from 

area/entropy (spatial co-dimension 1 to spatial co-dimension 1)
• BUT, the Crofton formula generalizes to higher dimensions with complementary 

dimension surfaces. 
We can write a formula for the area of surfaces in terms of geodesics:

We can write a formula for the length of curves in terms of co-dimension 1 
surfaces:

• Neither of these has as nice an interpretation in terms of entropy alone.



• Does this connection generalize to less symmetric geometries?
• The formula for differential entropy requires no symmetry
• A. Weil: Integral geometry belongs “within the framework of E. Cartan’s theory of 

homogenous spaces.” Should we be worried? 
Perhaps not.
• There is a more general framework [Paiva, Fernandes]: Gelfand Transform:

Consider some manifold B, dim(B)=n, with a family of submanifolds Bγ , 
dim(Bγ)=n-k, parametized by points γ on the manifold Γ,     a smooth measure on Γ.

• Let A be the double-fibration over Γ,B of incidence relations:

For some immersed submanifold N of dimension k, 
we have:

• This seems to be a generalization of some of the ideas in differential entropy, but 
not necessarily the one we want



• Our construction in higher dimensions is clearly incomplete. 
a) Is there a generalized notion of Crofton formula that matches differential 

entropy?

b) Is differential entropy the wrong generalization of the idea from the 2D 
Crofton formula?



7) What are we counting?
We have defined the differential entropy in terms of a sum of entanglement 
entropies, but what does this entropy actually measure? Does it correspond to the 
von Neumann entropy of some different density matrix?

?

The answer is NO.

• This is easiest to see when we consider the entropy of a hole in empty AdS: [Kim, 
Swingle]
Assume the ground state is unique.
The collection of local density matrices                       is sufficient to calculate the 
expectation value of the local Hamiltonian.
Thus, there is a unique state            that is consistent with our collection of density 
matrices. It’s impossible to “fill in” the hole in the spacetime without 
propagating energy out the boundary.

=�



To see where we went wrong, it’s helpful to 
return to the MERA picture:
• Cutting out a hole in the interior of the MERA 

lattice does NOT actually uniquely determine the 
collection of density matrices.

• The density matrix depends on the complete 
causal cone of the boundary region.

• The exterior region cuts the causal cone at its 
shortest width.

• The information encoded in the exterior of the 
MERA lattice is really the Descending 
Superoperator that maps the IR density matrix 
specified at the hole to UV density matrix at the 
boundary.

• The Descending Superoperator can be thought 
to propagate the conserved charges of interior 
excititations to the UV boundary; it enforces 
gravitational Gauss’ Law. [Vidal, Evenbly]



• So while for QFT we may associate an entropy with a fixed region of spacetime, the 
differential entropy should be associated with a region of fixed boundary area 
mapped into different exterior spacetimes.

• Perhaps we should associate differential entropy not with                      , but with                                    

• While it is clear how to determine D from MERA lattice, it is not clear how to extract 
from continuum density matrix.



8) Differential Entropy and the RG?
• Differential entropy is a functional that takes a collection of density 

matrices {𝜌𝜌(𝜆𝜆)}𝜆𝜆 and outputs one number, the generalized area.

• But the question of reconstructing the bulk is one that is much stronger 
than just computing areas 

• And, from the boundary perspective, {𝜌𝜌(𝜆𝜆)}𝜆𝜆 contains much, much more 
information than just 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. How should we understand what this 
collection of density matrices is?

Conjecture Guess:

The map 𝜌𝜌→ {𝜌𝜌(𝜆𝜆)}𝜆𝜆 should be understood as an information theoretic RG 
(coarse-graining) on the state. To {𝜌𝜌(𝜆𝜆)}𝜆𝜆 we should associate an IR field 
theory that lives on the holographic screen whose area is computed by 
𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[{𝜌𝜌(𝜆𝜆)}𝜆𝜆].



• {𝜌𝜌 𝜆𝜆 }𝜆𝜆 explicitly seems to describe the exterior of 
the holographic screen. The CFT which lives on the 
screen then should describe the structure of IR 
entanglement which stitches them back together 
into 𝜌𝜌. 

• A precise boundary formulation of holographic RG 
has been difficult. This suggests a framework, 
although we lack a user’s manual. It’s much more 
clear in the MERA setting.

• Czech and Lamprou have developed a nice picture 
for understanding the topology of a spatial slice in 
terms of differential entropy. This RG structure 
extends the picture nicely: 
• An IR CFT defines an open set on the spatial slice
• We define inclusion of sets if one CFT can be obtained 

from another by RG flow
• Points are the infinite limits of these RG flows



• There are also interesting connections between the 
RG and our understanding of non-minimal extremal
surfaces

• So there is an RG flow between non-minimal and 
minimal extremal surfaces

• With respect to a particular choice of holographic 
RG, the non-minimal surface encodes IR spatial 
entanglement entropy (+ a non-spatial UV entropy 
that we still don’t understand)

• The non-minimal surface is also specified at the UV 
boundary by an non-standard set of boundary 
conditions—can we understand the flow of boundary 
conditions from the UV theory?



• This RG perspective also gives an interesting interpretation for what we are 
calculating with differential entropy:

• The differential entropy can then be understood as summing the differential 
contribution of IR entanglement entropy with respect to mutually 
incompatible RG schemes.



Conclusions
• We have given a geometric definition of differential entropy that generates 

the generalized area of arbitrary surfaces in higher-derivative theories of 
gravity.

• This definition of differential entropy has an incomplete boundary 
description:
• Using only spatial entanglement entropy, we can only associate entropies to 

coarse-grained bulk surfaces
• With a (not currently understood) boundary prescription for all boundary anchored 

extremal surfaces, we could assign an entropy to all bulk surfaces

• Differential entropy is only one piece of data that we can assign to a collection 
of boundary density matrices. A much richer structure is to assign to this 
coarse-graining an information theoretic RG scheme
• Is this the right boundary interpretation of holographic RG?
• There seems to be an interesting connection between this RG flow, the flow of 

non-spatial EE, and differential entropy.
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