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Black Hole Entropy:
» Bekenstein and Hawking: “black holes carry entropy!”

thermodynamics I’e|fltIVIty geometry
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SBH = = 15

/N

guantum gravity

* “horizons carry entropy!”: de Sitter space and Rindler wedge



Black Hole Entropy:

» Bekenstein and Hawking: “black holes carry entropy!”

thermodynamics I’6|fltIVIty geometry

N s 4

SBH =
h 4G
/ AN

7 N
quantum gravity

* “horizons carry entropy!”: de Sitter space and Rindler wedge

e window Into quantum gravity?!?



Spacetime Entanglement Conjecture (Bianchi & RM)

* in a theory of quantum gravity, for any sufficiently large region A
In @ smooth background, consider entanglement entropy between
dof describing A and A; contribution describing short-range
entanglement is finite and described in terms of geometry of
entangling surface with leading term:

Sup = 2

EE — 4GN

* higher order terms controlled by higher curvature gravitational
couplings, similar to Wald entropy (RM, Pourhasan & Smolkin)



Spacetime Entanglement Conjecture (Bianchi & RM)

* in a theory of quantum gravity, for any sufficiently large region A
In @ smooth background, consider entanglement entropy between
dof describing A and A; contribution describing short-range
entanglement is finite and described in terms of geometry of
entangling surface with leading term:
Sup = 22
EE T I
4G N

e arguments: 1. holographic Sk in AAS/CFT correspondence

QFT renormalization of Gn
iInduced gravity, eg, Randall-Sundrum 2 model

Jacobson’s “thermal origin” of gravity

a bk~ w0 D

spin-foam approach to quantum gravity



AdS/CFT Correspondence:

Bulk: gravity with negative A Boundary: qguantum field theory
iIn d+1 dimensions — > In d dimensions
“holography”
anti-de Sitter T conformal
Space field theory

Are there boundary observables corresponding
to Sy, for general surfaces in bulk?



(Ryu & Takayanagi "06)

Holographic Entanglement Entropy:

r = 0o
AdS boundary
boundary
conformal field
theory
AdS bulk
spacetime
Ay
S(A) = min ——
ov=x 4G N
Sg applied in

unusual circumstances



Lessons from Holographic EE:

AdS/CFT Dictionary:
Boundary: thermal plasma «— > Bulk: black hole

Temperature Temperature
Energy Energy
Entropy Entropy




Lessons from Holographic EE:

(entanglement entropy),oungary = (€Ntropy of extremal surface),,

« R&T prescription assigns gravitational entropy Sy = A/(4G N )
to “unconventional” bulk surfaces/regions:

not black hole! not horizon! not boundary of causal domain!

e indicates S g, applies more broadly but more examples?

* Sg,, on other surfaces speculated to give new entropic measures
of entanglement in boundary theory

—> causal holographic information
(Hubeny & Rangamani; H, R & Tonni; Freivogel & Mosk; . . .)

—> entanglement between high and low scales
(Balasubramanian, McDermott & van Raamsdonk)

—> hole-ographic spacetime
(Balasubramanian, Chowdhury, Czech, de Boer & Heller)



(Balasubramanian, Chowdhury, Czech, de Boer & Heller)

1 . . " Xiv:1310.4204 [hep-th
hole-ographic spacetime”: AR [hep-th]

two new ideas:

* residual entropy : collective uncertainty associated with family
of observers confined to finite time strip; maximum entropy of
global density matrix consistent with density matrices of subsy’s

o differential entropy
B =) (8)—S(I;N 1)

boundary observables which yield gravitational entropy of closed
curves inside of d=3 AdS space with certain continuum limit
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hole-ographic spacetime”: AR [hep-th]

two new ideas:

* residual entropy : collective uncertainty associated with family
of observers confined to finite time strip; maximum entropy of
global density matrix consistent with density matrices of subsy’s

Conjecture :

residual entropy = differential entropy
\

« differential entropy : o= Eews
E =Y (S(I;) = 5(I; N Ij11))

boundary observables which yield gravitational entropy of closed
curves inside of d=3 AdS space with certain continuum limit



(Balasubramanian, Chowdhury, Czech, de Boer & Heller)

1 . . " Xiv:1310.4204 [hep-th
hole-ographic spacetime”: AR [hep-th]

two new ideas:

* residual entropy : collective uncertainty associated with family
of observers confined to finite time strip; maximum entropy of
global density matrix consistent with density matrices of subsy’s

Conjecture :

residual entropy = differential entropy
\

( 2
« differential entropy : F

LE =2 BI)-5LNnLw) | (o

boundary observables which yield gravitational entropy of closed
curves inside of d=3 AdS space with certain continuum limit

Today s Focus




Strong Sub-Additivity:  S(I; U ) + S(I1 N 1z) < S(I1) + S(12)

 recall proof that RT prescription satisfies SSA
(Headrick & Takayanagi)




S(Il UI2) —+ S(Il ﬂ[g) < S(Il) -+ S(IQ)

11/_\ (Headrick & Takayanagi)

[extended to | dynamical setting: Wall] S (I 2)



One perspective on
hole-ography:

recall strong subaddivity:
S(Lhuly) <S(IL)+ S(lz)— SN Is)

consider AdS; in global coordinates
with two intervals, I, and |,, on bdry

\




as a geometric inequality:

~

S(I, ) < S(I) + S(I,) — S(I, N L)

where S(I;, I,) corresponds to
(length of outer envelope )/4G




as a geometric inequality:

~

S(I, ) < S(I) + S(I,) — S(I, N L)

where S(I;, I,) corresponds to
(length of outer envelope )/4G

Note: S(I,.L,) is not a function of I, U I, alone;
Instead depends on detalls of partition

\/

eg, LU, =1L UI, but 5’([1,12) + S*(Ih]é)




consider AdS; in global coordinates
now with three intervals on bdry

strong subaddivity:\

S(LULUIL) < S(L)+ S(3) +S(I3) — S(I;N L) — S(I,N I3)




consider AdS; in global coordinates
now with three intervals on bdry

geometric inequality:\

Fa

S(I1, I, I5) < S(I) + S(I) + S(I) — S(IiN L) — S(I, N I3)




1%
[ eV

consider AdS; in global coordinates
now extend the number of intervals to cover the entire bdry




I

Z\ =] =
for any pure state, LHS trivial!! : A’

I7 ng 1 1) = S([¥)(¢]) =0 I5

\ANYASay/

Holography: extremal surface homologous to
entire boundary shrinks to zero




geometric inequality:  S({I;}) < Z S(I;) — Z S(Lx N Iiyq)

NN

outer envelope is closed curve!

>

\/

I




(Balasubramanian, Chowdhury, Czech, de Boer & Heller)
» keep length of intervals is fixed but take number of intervals to infinity

e outer envelope becomes a smooth circle of constant radius
e surprise is that the geometric inequality is precis ely saturated!
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In “continuum limit”™
Sgy In bulk = differential entropy on boundary

SR

geometric inequality: S‘({[k}) L 2 nS (Tg) — 2,25 505 N 1y, 1)




(Balasubramanian, Chowdhury, Czech, de Boer & Heller)
« prescription extends to general curves in the bulk with S o length of curve

L

e geometric inequality is again saturated! ¢ »
length .
_— ZS (1) ZS(IkakH) 1!
k=1

geometric inequality: S‘({[k}) L 2 nS (Tg) — 2,25 505 N 1y, 1)



Higher dimensional “holes™
o “outer envelope” readily extends to higher dimensions

« extend to AdS,, in Poincare coordinates and tile t=0 surface
with strips/slabs of constant width




Higher dimensional “holes J

o “outer envelope” readily extends to higher dimensions

» extend to AdS,, in Poincare coordinates and tile t=0 surface
with strips/slabs of constant width

* hole-ographic prescription extends to genere}I surfaces (with
planar symmetry, ie, z=z(x)) in the bulk with S ~ area of surface

lo = L7 T~ TN
e geometric mequallty IS again saturated! _
r / )( \ \ Z O
—> A/(4Gy) = S(Iy N Iy1)

B et
in “continuum limit”: "~ ‘

Sgy In bulk = differential entropy on boundary

\V.‘. \

=(area) /4Gy

/



Causal Holographic Information:

« evaluate Sz, for extremal surface on
boundary of bulk causal wedge

xX(A) = f(GAjj

* might give natural extension of “observer

story” to higher dimensions

« applying hole-graphic prescription to strip

(Hubeny & Rangamani)

icht-dheet LT

M

decomposition in higher dimensions, find:| =~ ight-sheet L~
“geometric inequality” is NOT saturated! /

o0 o0 d—4
s > ) =Y TN ) ~ ()

» sub-leading divergences are nonlocal!! (in contrast to Sgg)

(Freivogel & Mosk)

—> |esson: hole-ographic construction requires extremal surfaces



General Backgrounds: J

» consider more general holographic backgroundS'

ds? = —go(2) dt? + g1(2) da? +Zgz )2+ f(2) dz

—_—> Sgrav — Zzozl S(Ik) — Zzozl S(Ik ﬁIk—l—l)

—> lesson: AdS vacuum (or even AdS asymptotics) not essential;
extremal surfaces are again essential ingredient

Higher Curvature Gravity: J
 construction extends to Lovelock gravity

—> |esson: essential ingredient is Sge determined by
extremizing appropriate entropy functional



Time-dependent bulk surfaces:

e salient lessons: |
» boundary data: two “independent” surfaces defining
family of intervals: 7. (A) = {tL(\), zL(M)}; Yr(A) = {tr(A),zr(N)}

» define intervals by finding extremal HEE surface which is
tangent to bulk surface at each point



general “hole-ographic” construction can be packaged in terms of
classical mechanics lemma:

Sf.q%
« consider on-shell action: Son 2/ ds E(qaaasqa)
S

., a
i 45

e varying boundary conditions:
5Son = 04 — By 55 — p 0% + i 0s; + /ds[M]



general “hole-ographic” construction can be packaged in terms of
classical mechanics lemma:
Sf.q5
« consider on-shell action: Son 2/ ds L(q",0sq")
Siaqg/

e varying boundary conditions:
5Son = 04 — By 55 — p 0% + i 0s; + /ds[M]

« consider family of boundary conditions:{si(A), ¢ (A}, {sr(A),qF(N)}

OxSon = Py Oxqy — Hy Oxsy — pi Oxgi' + H; Oxs;



general “hole-ographic” construction can be packaged in terms of
classical mechanics lemma:
Sf.q%
« consider on-shell action: Son 2/ ds L(q",0sq")
Siaqg
e varying boundary conditions:
5Son = 04 — By 55 — p 0% + i 0s; + /ds[M]
per‘.\Od.\C
. consider family of boundary conditions:{s:(A),a?(\)}, {s5(A),q%(\)}

1
0 — f AN [p% Oxq — Hy sy — p2 Org® + H Oys;]
0



general “hole-ographic” construction can be packaged in terms of
classical mechanics lemma:

Sf.q%
consider on-shell action: Son = / ds E(qaa 53(10’)
S

., a
i 45

varying boundary conditions:
5Son = 04 — By 55 — p 0% + i 0s; + /ds[M]

per‘.\Od.\C
consider family of boundary conditions:{si(\), ¢? (M)}, {s5(A),q%(\)}

1
0= f d)\ [pjﬁ O\q —%3)\8]“ — pi O\G} "‘%&\Si]
0

further require reparametrization invariance: s — 5(s)

—> vanishing energy: H =0



general “hole-ographic” construction can be packaged in terms of
classical mechanics lemma:

—> vanishing energy: H =0 —> operator iden: §*

—> momentum invariant: —

Sf.q%
consider on-shell action: Son = / ds E(qaa 3sqa)
S

iq5
varying boundary conditions:
0Son = Py oqy — Efosy —pi oq; + E;0s; + /dS[M]
per'\odic
consider’\fam(ily of boundary conditions:{si(A), ¢’ (M)}, {sr(A),q5(A)}
1

~

1
| axspog = [ axpro
0 0

\ y
further require reparametrization invariance: s — 5(s)

oL

dq®

=L

oL oL

0(0sq%) 0(03q%)



- : xr(A) tL(A)
classical mechanics lemma: boundary

apply lemma to entropy problem
with end-point data:

15i(A), @i (N} =15 = 0,2 = 0,2L(A), tL(A)}

151 (A): @3 (N)} = {8tang(A), 2B(A), 28(A), tB(A)}

extremal

.
.
.
a®
lllllllll

z(A), zB(A), tB(A)
bulk surface

also use reparametrization invariance of entropy functional

1 1
dq? dSgg
— > d/\[,(q“,(?)\qa):—/ dx —L 22
/o B CAIB o AN dge

- —

Gravitational Entropy  Differential Entropy

for general surfaces in general backgrounds
(with generalized planar symmetry)



1 1
dq? dSgg
d\ L(q%,0rq5F :—f N =& —
/(; B B) 0 d)\ qu

- —

Gravitational Entropy  Differential Entropy

for general surfaces in general backgrounds (with g.p.s.)

* “hole-ography” seems a robust entry of holographic dictionary,

eg, extends from AdS; to higher dimensions, higher curvatures,
general holographic backgrounds



1 1
dq? dSgg
d/\[,q“,(%\qa):—/ N =& —
/(; ( B B 0 d)\ qu

- —

Gravitational Entropy  Differential Entropy

for general surfaces in general backgrounds (with g.p.s.)

e generalized planar symmetry:
one-parameter bulk profile, {t(A),z(A), z(A)}

—> same applies for extremal surfaces, {t(s), z(s), z(s)}

o latter restricts allowed backgrounds: — includes z, t & x!!
2 e ' a b
ds® = gij(z) dx" dz? + gap(z,y) dy® dy
l ]

J |\

— Y
' ={t,x,z} y* =d— 2 “planar” coord’s

along with det| gop(x,y)| = f(x)h(y)

e ensures y* = o Is valid extremal solution



1 1
dq? dSgg
d/\ﬁqa,(?)\q“):—f N =& —=
/(; (B B 0 d)\ qu

- —

Gravitational Entropy  Differential Entropy

for general surfaces in general backgrounds (with g.p.s.)

 generalized planar symmetry:
one-parameter bulk profile, {t(A), z(A), 2(A)}

* beyond generalized planar symmmetry . (Czech, Dong & Sully)

strategy is to foliate bulk surface with codimension one “loops”
and use as b.c. (like alignment of tangent vectors) to construct
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see net talk by Sully



Question:

o “differential entropy” defined a boundary observable where
Input is a family of intervals in boundary geometry

* have bulk-to-boundary construction: start with bulk surface
and construct corresponding boundary data, ie, 7.(A) and 7r(A)

* boundary-to-bulk construction?? can we reverse engineer bulk
surface from boundary data??

—> In general, seems answer may be NO!?!?



Question:
* boundary-to-bulk construction?? can we reverse engineer bulk
surface from boundary data??

——> are these intervals still associated with bulk surface??




Question:
boundary-to-bulk construction?? can we reverse engineer bulk
surface from boundary data??

——> are these intervals still associated with bulk surface??

look at “guts” of proof of bulk-to-boundary construction*

. Osx O\T
——> require ‘aﬂ; N |8ix§| N
LElnsteln gravity: oL = 9i 9.2
0(0.x") " ]0.8]
8)\337;3 63213‘23

proposed solution: Ohzn|  10.25]

* rest only applies for Einstein gravity in bulk and Sg,=A/4G



Question:
boundary-to-bulk construction?? can we reverse engineer bulk
surface from boundary data??

——> are these intervals still associated with bulk surface??

look at “guts” of proof of bulk-to-boundary construction

. 0.TR O TR
—> reguire o, = o,
4 |0sx B MOB O\ B AUB
LElnsteln ravit oL _ Osp
HEY: 50527 ~ 9910,25]
8)\337;3 o 885137’3

general solution: + k'

O xp|  |0sz8)

where k- k=0 and k- -0\xg =0



Entang|ement Wedge; (Headrick, Hubeny, Lawrence & Rangamani)

 causal development of bulk Cauchy
surface bounded by extremal surface
and entangling region in asymptotic
boundary

e connects to boundary of causal

- development in asymptotic boundary

 conjectured bulk region dual to
density matrix in boundary theory

(see also: Czech, Karczmarek, Nogueira
& van Raamsdonk)

« in differential entropy, use intersection
of extremal curves with entanglement
wedge of neighbouring curve

caustic



Question:
* boundary-to-bulk construction?? can we reverse engineer bulk
surface from boundary data??

* look at “guts” of proof of bulk-to-boundary construction
k-k=0
k - aAa?ZB =0

N O.1"
—> allows 2~B _ “s"B

Oz |0szB]

+ k' where -[

JT(s: A+ dA)

Wi(s, ; A +dA)



Question:
* boundary-to-bulk construction?? can we reverse engineer bulk
surface from boundary data??

* look at “guts” of proof of bulk-to-boundary construction
k-k=0
k - aACCZB =0

N O.1"
—> allows 2~B _ “s"B

+ k' where -|:

Oz |0szB]




Question:
* boundary-to-bulk construction?? can we reverse engineer bulk
surface from boundary data??

* look at “guts” of proof of bulk-to-boundary construction
k-k=0
k - 8)\$ZB =0

(9)\51313 - 8S:L'ZB

—> allows + k! Where-[

Oz |0szB]




Question:
* boundary-to-bulk construction?? can we reverse engineer bulk
surface from boundary data??

* look at “guts” of proof of bulk-to-boundary construction
k-k=0
k - 8)\:0’43 =0

N O.1"
—> allows 2~B _ “s"B

Oz |0szB]

+ k' where -[




Question:
boundary-to-bulk construction?? can we reverse engineer bulk
surface from boundary data??

look at “guts” of proof of bulk-to-boundary construction
k-k=0
k - 8)\337’3 =0

N 0.1’
—> allows 2—B s”B

+ K where-[

“enveloping
surface”

OM) N

two surfaces ‘

~ boundaries between
null and space-like normal



Time S'[I‘ipSZ (Balasubramanian, Chowdhury, Czech, de Boer & Heller)
e observations limited to be within a finite “time strip”

« time strip alone does not fix “protocol” or differential entropy




Time strips:  time strip alone does not fix “protocol” or
- differential entropy

minimum
area surface

* by varying observers/intervals for fixed time
strip, corresponding bulk curves explore the
“enveloping surface” of minmal bulk surface



Time strips:

e observations limited to be within a finite “time strip”

 many families of observers for the same time strip

e Question : what is most effective protocol to minimize the
differential entropy for a given time strip?*

(* Hint: not maximum proper time protocol)



Time strips:  time strip alone does not fix “protocol” or
differential entropy

 alternatively, there are many
different families of boundary
Intervals and time strips which
will reconstruct the same bulk
curve

* Question: Is there a hidden “gauge”
symmetry underlying this redundancy?



More questions:

 why only consider entanglement entropy?

evaluating many holographic probes at leading order
In large N involves extremizing some functional in bulk

—> same classical mechanics lemma applies

eg, reconstruct length of curve in bulk O
from two-point correlator of high
dimension operator @
dg¢ Oga (O(q) OlaR)) y

ly) = jé LAY A(O(q7) Olag)) v

(with D. Galante & J. Pedraza)




More questions:

 Residual entropy: what is the relation between differential

entropy and residual entropy? see talk by Hayden

 Minimal vs Extremal: our proofs/discussions are local and so
work with extremal surfaces but may not be “minimum area”
surfaces which determine holographic entanglement entropy

—> |s there a role for extremal but nonminimal surfaces?
(V. Balasubramanian, B. Chowdhury, B. Czech, J. de Boer, arXiv:1406.5859)

 Wandering surfaces: In some cases, extremal surface may
not reach boundary, eg, hit singularity or fall through horizon

—> |s there a sensible story here?
when do extremal surfaces reach singularity?

In horizon case, (much of) story readily extends by purifying
thermal state, ie, include other boundary (with J. Rao)



More questions:

 Beyond generalized planar symmetry
Improved by approach of Czech Dong & Sully

« covariant formulation of differential entropy?
e tiling boundary with finite regions? see next talk by Sully



More challenges/questions:

 Annoying signs: sometimes tangent vectors are anti-aligned

: anq_é 8833%
—> recall tangent vector alignment: =
|8)\xB | |88£EB|
8)\35‘7}3
——— bulk surface
extremal
surface
xaL xaR boundary



More challenges/questions:

 Annoying signs: sometimes tangent vectors are anti-aligned

. anq_é 8833%
—> recall tangent vector alignment: =
Ozl |Oszpl
8)\35‘7}3
— bulk surface

extremal
surface

a
:C% x9 boundary

8)\5137’3 o 885673

e take complementary regions; now have: =
%7z 052

—> Sdsz — _SgTav



More challenges/questions:

 Annoying signs: sometimes tangent vectors are anti-aligned

—> alignment of tangent vector can change at various points, eg,
for constant t and AdS.: '

Tp = TRTTL = A
2 e ———
4 2
rTr —xr; =4 — X
ok A2+ 1 /______//
(compare V. Hubeny,

bulk curve 4 / arXiv:1406.4611)
Or\T'g  differential S yields
“signed” area
—> Saiff = /oz()\) dA
“negative area” OsTp
DPP7P77

boundary



More challenges/questions:

 Beyond leading order in N 2: first need to extend holographic
entanglement entropy beyond saddle-point approximation

L [(Ay)
5(4) = min AG N

(Faulkner, Lewkowycz & Maldacena, arXiv:1307.2892; Engelhardt & Wall, arXiv:1408.3203)

+ SEE, 1—loop +

see talk by Wall



More challenges/questions:
e Beyond leading order in N 2: puzzle by Maldacena

consider two states for spins:

|singlet)1 2 X |singlet)s 4

(extra entropy for hole)

|singlet)1 4 X |singlet)a 3

(not extra entropy for hole)

—> naive extension of S« doesn’t see to distinguish two states
What extension of S, properly accounts for quantum corrections?



Conclusions:

 holographic Sge suggests new perspectives

—> guantum information & entanglement may yield key
Insights to fundamental issues in quantum gravity

a3
Qs
Q=
T
B
dn SR
g
Q%

 Spacetime entanglement: Sg,, applies for generic large regions

* “hole-ography” (ie, gravitational entropy = differential entropy)
points to a precise definition in AAS/CFT context
 ‘“differential operators”: new insights on quantum gravity in AdS

Lots to explore!



