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Horizons in general relativity obey universal thermodynamic laws. 

• First law 

• 2nd law 

• etc... 

These can be viewed as IR constraints on the UV completion of 
quantum gravity, required by diffeomorphism invariance: 

• log (# states) ~ area of black hole horizon 

•   

• Entanglement entropy = Ryu-Takayanagi formula 

• etc...

⌘/s ⇠ 1
4⇡
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We do not have any decent microscopic understanding of where 
these universal laws come from. 

• Holography suggests that we should try to understand these 
microscopic laws from some large class of CFTs. 

• This would be a step towards deriving (some corner of) AdS/CFT. 
!

!

!

String theory
Einstein equation, etc.

“stat. 
mech.”

To derive universal features, the Lagrangian of the dual CFT is 
probably the wrong starting point.   
!

We need an effective description that does not rely on every 
microscopic detail. 
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‘Sparse CFT’ approach 

• There are (at least) two prerequisites for a CFT to act like quantum 
gravity in the semiclassical regime: 

‣ large N (large central charge c)  

‣ Small number of low-dimension operators  

• Within this class, use general properties of CFT --- crossing, 
modular invariance, OPE, etc --- to derive universal behavior 

!

!

!

!

!
!

!

!
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But... 

• How sparse is sparse enough? 

• Are further assumptions needed to get a CFT with a holographic 
dual? 

• So far, most concrete results are in 2d CFT where we the power of 
Virasoro symmetry. Can this approach be applied in d > 2?
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This talk: Sparse CFTs in 2d 
!

I.     Spectrum and thermodynamics = BTZ black holes 
!

!

!
II.    Holographic entanglement entropy 
!

!

!

TH, Christoph Keller, Bogdan Stoica ’14

in vacuum: TH ’13

in excited states: Curtis Asplund, Alice Bernamonti,  
Federico Galli, TH  (to appear)
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Objection: But 3d gravity is trivial! 

• It has no propagating d.o.f.  

• However, it is nontrivial if we include topology, defects, or matter. 

!
Similarly, in 2d CFT many things are completely fixed by 
Virasoro symmetry: 

• <TT...> correlators 

• Cardy entropy at high energy 

• Entanglement entropy of a single interval 

!
We will always be including some nontrivial topology or 
defects.  None of the results I’ll discuss are consequences of 
Virasoro alone.

6
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From the entropy of the BTZ black hole, the spectrum of 3d 
quantum gravity is 
!

!

!

!

!

In the canonical ensemble, 
!

!

!

!

!

with a sharp Hawking-Page transition at 
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• This was derived from the dual D1-D5 CFT by Strominger and 
Vafa (’95).  But the calculation relied on the microscopic details -- 
why is the answer universal? 

• In ’97, Strominger computed the same entropy using the Cardy 
formula. This argument is much more universal.   

!

!

• However, in a general CFT the Cardy formula applies only as 
!

• In holographic theories (including D1-D5), the Cardy formula 
should apply whenever the black hole exists: 

!

8

SCardy(�) = SBTZ(�) = 2⇡

r
c

6
(�� c

12
) (�� c)

�!1

� >
c

12
In 2d, the extended regime of validity of the Cardy formula is a key 
feature that distinguishes holographic CFTs from the rest. 
What theories have this property?
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We showed that at large c, modular invariance guarantees that 
CFT reproduces BTZ thermodynamics if and only if the low-
lying density of states is bounded by 
!

!
!

This might be a reasonable definition of a “sparse” CFT in 2d; it 
is enough to have black-hole-like behavior, but we do not know 
if it is enough to behave like quantum gravity in all respects. 
!

!

Philosophy: Large c + gap ==> only the vacuum contributes to  

!

A similar philosophy will be used to derive the holographic 
entanglement formula.
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!
In 1+1 dimensions: 
Space is a line, so A consists of one or more intervals:

A A A · · ·

SA = �tr ⇢A log ⇢A

Entanglement entropy
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Replica Method 
! Zn = Tr ⇢n

A

SA =
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The replica method is useful in states that can be prepared by a 
path integral. 
!

Example #1: Two intervals in vacuum on line 
!

!

!

!

11

Tr ⇢n
A =

· · ·

Example #2: One interval in a primary state         in radial quant. 

Tr ⇢n
A =

| i
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Our goal is to compute these partition functions in sparse CFTs. 
!

First, recast as correlation functions involving ‘twist operators’:

12

Two intervals in vacuum: 

xx xx
� ��̃ �̃

h0|��̃��̃|0i
Headrick ’10 
TH ’13

�

One interval in primary state: 

x

x

xx �̃

 

 

h |��̃| i = h0| ��̃ |0i

Asplund, Bernamonti, 
Galli, TH (to appear)
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These are ordinary (local) correlation functions in a cyclic 
orbifold theory with n copies of the original CFT, 
!

So we can use the conformal block expansion:
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CFTn/Zn

OPE coefficient
Virasoro Conformal Blocks

Hn =

c

24

(n� 1/n) = dimension of twist operator

Expand in the channel:
�
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Universality? 
!

• In general, these entanglement entropies are not universal: they 
depend on the operator content and OPE coefficients of the CFT 

!

• However, in all holographic theories they should be computed by 
the length of a geodesic 

!

• So we expect a universal answer in sparse CFT
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Outline of the large-c calculation 
Virasoro blocks have a nice form at large central charge: 
!
!
Thus we expect that the OPE sum is dominated by a saddle. In 
sufficiently sparse CFTs, the “saddle” must land on the vacuum 
rep: 

Comments: 
• This contribution is universal (independent of CFT details) 
• Leading order in 1/c (but all orders in OPE!)  
• It is the Virasoro block for the vacuum rep, which in 2d includes 

everything you can make out of stress tensors: 
!
!

• Heavy correlators are exponentially dominated by exchange of 
operators built from the stress tensor. (Dual: 3d graviton) 
!

1 , T , @T , T 2 , T@T , · · ·

Zamolodchikov ’87
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F(�, z) ⇡ e�cf(�
c ,z)

Tr ⇢n
A ⇡ e�cf(0,z)�cf(0,z̄)
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Entanglement entropy 

• This is our formula for the Renyi entropy. In general, the block f 
can only be computed as a series expansion. 

• But for n-->1, twist operators become light
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Hn ⇠
c
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light

light

heavy

heavy

identity

• So for EE, we just need the Virasoro block for the case: 

!

!

!

!

• This is known!
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c
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Fitzpatrick, Kaplan, Walters ’14
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This gives a closed-form answer for the entanglement entropy 
in a primary state: 
!

!

!

• This agrees with holographic formulas.  I’ll give some examples/
applications. 

!

• There are some caveats about when this CFT calculation is reliable/
justified, which I’ll mention in a few slides. 

!

• Since primaries + conformal transformations give a complete basis 
of states, it seems plausible that this is close to a complete 
microscopic derivation of the RT/HRT/LM/etc formula in AdS3 
from CFT, in an arbitrary state.
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Application #1: Black Holes and Conical Defects 
To apply our EE formula to a heavy state on a cylinder, set

18

x
x

z = ei`, z̄ = e�i`

SA =

c

3

log


� 
⇡

sinh

✓
⇡`

� 

◆�

� ⌘
2⇡p

24h /c� 1

!

• Agrees with geodesic on the BTZ black hole of temperature 

• [Aside: not fixed by conformal symmetry, since we are on a circle] 
� 
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The non-pertubative subtlety: 

• The CFT calculation was reliable in some finite neighborhood of 

!

• It must fail for some z, when the identity block in another channel 
dominates: 

!

!

!

!

• In the original OPE, this other channel must appear as terms non-
perturbative in 1/c. Saddles exchange dominance in z plane. 

• The caveat: We cannot prove that we’ve accounted for all non-
perturbative contributions. We simply assume that the full, non-
perturbative answer is given by the dominant identity block. 

‣ Does this require further restrictions on definition of “sparse”?
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Back to the black hole: 

• Previously I wrote the formula in a single OPE channel.  

• The full answer (with assumption just stated) is therefore

20
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The CFT calculation was in a pure state, 
!

!

So this is actually not dual to BTZ but to a BTZ microstate. 
!

And indeed,  

⇢ = | ih |

SA = SAc
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The two different OPE channels correspond to two different 
geodesics on BTZ:

21

Recall in eternal BTZ the holonomy condition requires a 
disconnected geodesic, wrapping the horizon. 

• Makes no appearance in the CFT calculation. 

• So the holonomy condition is not imposed in this case. 

• This makes sense, since horizon should not contribute in a pure state.
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Multiply-wrapped geodesics? 
!

!

!

!

!

!

• In the CFT, these correspond to the identity rep in a bizarre choice of 
OPE channel:

22

x
x x x
� �̃ 

 h ��̃ i = identity 
much bigger 

stuff+

• This suggests that if we are to make sense of non-minimal surfaces, we 
need some notion of “microcanonical” rather than “canonical” Renyi EE.
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Application #2: Local quantum quench 

• “Quench”: sudden change external to the system, then evolve under 
the usual Hamiltonian 

• We consider a “local operator quench” where we insert a local 
operator at 

23

x = 0, t = i�

Nozaki, Numasawa, Takayanagi ’14; 
Caputa, Nozaki, Takayanagi ’14|Qi =  (i�)|0i

Lorentzian cartoon 
!

A

SA(t)
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This is different from a primary state,

24

x
 vs. x 

But is related by a conformal transformation. 
The entanglement Renyi correlator is

Zn = h (�i�, 0)�(`1, t)�̃(`2, t) (i�, 0)i
= (conformal prefactor)⇥ h (0)�(z, z̄)�̃(1) (1)i

This is the correlator we computed before, 
but now in Lorentzian signature.
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Therefore 
!

!

!

where z is the cross ratio. 
!

But if we evaluate z we find 
!

Naively the answer is constant in time! 
!

25

S =

c

6

log

(zz̄)

1
2 (1�↵ )

(1� z↵ )(1� z̄↵ )

↵2
 

+ conformal factors

But not all 1’s are created equal. There are branch cuts in this 
expression and we can take 
!

!

independently.

z ! e±2⇡iz, z̄ ! e±2⇡iz̄

z = 1 + O(�)
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This is a 2-step process: 
First, choose a Euclidean OPE channel: 
!

!

!

!

!
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x
x

x x
� �̃ 

 
x

x
x x

� �̃ 
 or

!

Second, in Lorentzian signature,     or     crosses a branch cut when 
one operator passes through the light-cone of another.

z z̄

A

How to cross these branch 
cuts is a dictated by the 
operator ordering:

h ��̃ i
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After keeping track of these branch cuts, we find that the shape 
and height of the entanglement bump: 
!

!

!

!

!

!

!

 are related to the braiding of the Virasoro vacuum block: 
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Comparison to holography 

• A holographic model of a local quench was proposed by Nozaki, 
Numasawa, and Takayangi ’13: An infalling particle geometry 

!

!

!

!

!

• This is the holographic dual of our calculation. The infalling 
particle hits the boundary at imaginary time  

!

• CFT results agree precisely with geodesic lengths on this 
background. 
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t = i�
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Conclusion 

• Sparse CFTs in two dimensions have universal, gravity-like 
behavior. 

• A sparse CFT has large c and a restricted number of light states, 

!

• We also “assumed away” certain contributions to the OPE; is this 
automatic or does this impose additional requirements on sparse 
CFT? 

!
Homework 
d-dimensional CFTs with properties X,Y,Z have the thermodynamics, 
entanglement entropy, and viscosity-to-entropy ratio of d+1-dimensional 
Einstein gravity. 

• Find X,Y,Z 

• Derive this

29
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