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Horizons 1n general relativity obey universal thermodynamic laws.
e First law
e 2ndlaw

® cfcC...

These can be viewed as IR constraints on the UV completion of
quantum gravity, required by diffeomorphism invariance:

® Jog (# states) ~ area of black hole horizon

1

o ~A —
n/s ym

e Entanglement entropy = Ryu-Takayanagi formula

® cfcC...
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We do not have any decent microscopic understanding of where
these universal laws come from.

e Holography suggests that we should try to understand these
microscopic laws from some large class of CFTs.

e This would be a step towards deriving (some corner of) AdS/CFT.

To derive universal features, the Lagrangian of the dual CFT 1s
probably the wrong starting point.

We need an effective description that does not rely on every
microscopic detail.

Q /) O “stat.

O ) mech.”
String theory

Einstein equation, etc.
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‘Sparse CFT’ approach

® There are (at least) two prerequisites for a CFT to act like quantum
gravity in the semiclassical regime:

» large N (large central charge ¢)
» Small number of low-dimension operators

e Within this class, use general properties of CFT --- crossing,
modular invariance, OPE, etc --- to derive universal behavior

But...

e How sparse 1s sparse enough?

e Are further assumptions needed to get a CFT with a holographic
dual?

e So far, most concrete results are in 2d CFT where we the power of
Virasoro symmetry. Can this approach be applied in d > 2?
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This talk: Sparse CFTs in 2d

[. Spectrum and thermodynamics = BTZ black holes
TH, Christoph Keller, Bogdan Stoica 14

[I. Holographic entanglement entropy

in vacuum: TH ’13

in excited states: Curtis Asplund, Alice Bernamonti,
Federico Galli, TH (to appear)



0. Introduction > I. Spectrum II. Entanglement entropy 6/29

Objection: But 3d gravity 1s trivial!
e [t has no propagating d.o.f.

e However, it is nontrivial if we include topology, defects, or matter.

Similarly, in 2d CFT many things are completely fixed by
Virasoro symmetry:

e <TT..> correlators
e (Cardy entropy at high energy

C
e Entanglement entropy of a single interval S 4 = 3 log ¢

We will always be including some nontrivial topology or
defects. None of the results I’ll discuss are consequences of
Virasoro alone.
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From the entropy of the BTZ black hole, the spectrum of 3d
quantum gravity 1s
C

S@)=0(1)  (A<)
C C C
In the canonical ensemble,
cf
2
log Z ~ 7;—; (6 < 2m)

with a sharp Hawking-Page transition at 5 = 27
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® This was derived from the dual D1-D5 CFT by Strominger and
Vafa (’95). But the calculation relied on the microscopic details --
why 1is the answer universal?

e In ’97, Strominger computed the same entropy using the Cardy
formula. This argument 1s much more universal.

SCardy(A) — SBTZ(A) — 27’(‘\/%(A — 1—02) (A =>> C)

e However, 1n a general CFT the Cardy formula applies only as
A — 00

® In holographic theories (including D1-D5), the Cardy formula
should apply whenever the black hole exists:
A>
12
In 2d, the extended regime of validity of the Cardy formula is a key
feature that distinguishes holographic CF'1s from the rest.

What theories have this property?
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We showed that at large ¢, modular invariance guarantees that
CFT reproduces BTZ thermodynamics 1f and only 1f the low-
lying density of states 1s bounded by

pA) ™ (A< )

This might be a reasonable definition of a “sparse” CFT 1n 2d; it
1s enough to have black-hole-like behavior, but we do not know
if 1t 1s enough to behave like quantum gravity in all respects.

TH, Christoph Keller, Bogdan Stoica ’14

Philosophy: Large ¢ + gap ==> only the vacuum contributes to

S

A similar philosophy will be used to derive the holographic
entanglement formula.
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Entanglement entropy

Sa = —tr palogpa

In 1+1 dimensions:

Space 1s a line, so A consists of one or more intervals:

«— I — . >
A A A
Replica Method
Zn ="Tr p'i
1
Sa = log Z,,
1 —n
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The replica method is useful in states that can be prepared by a
path integral.

Example #1: Two 1ntervals in vacuum on line

Tr pls = g

Ard-
N

Example #2: One interval in a primary state |1/} in radial quant.
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Our goal 1s to compute these partition functions in sparse CFTs.

First, recast as correlation functions involving ‘twist operators’:

Two intervals in vacuum:

o Headrick *10
X—X %X (Olocgoa|0) TH °13

One interval 1n primary state:

: Wloalp) = (0lpaay|0)

Asplund, Bernamonti,
Galli, TH (to appear)
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These are ordinary (local) correlation functions 1n a cyclic
orbifold theory with »n copies of the original CFT, ¢ g™ /Z

So we can use the conformal block expansion:

(Wooip) =) AF(A,2)F(A,2)

A ‘\ /
‘ Virasoro Conformal Blocks

OPE coefticient

H, = 2—C4(n — 1/n) = dimension of twist operator

o / ¢
Expand in the channel: -~ >_\
o)
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Universality?

® In general, these entanglement entropies are not universal: they
depend on the operator content and OPE coefficients of the CFT

e However, in all holographic theories they should be computed by
the length of a geodesic

® So we expect a universal answer in sparse CFT
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Outline of the large-c calculation

Virasoro blocks have a nice form at large central charge:

F(A,2) ~ o—cf(5,2) Zamolodchikov 87

Thus we expect that the OPE sum 1s dominated by a saddle. In
sufficiently sparse CFTs, the “saddle” must land on the vacuum

rep: Ty PZ ~ e—cf(o,z)—cf(o,z)
Comments:
e This contribution 1s universal (independent of CFT details)

e Leading order in 1/c (but all orders in OPE!)

e [t 1s the Virasoro block for the vacuum rep, which in 2d includes
everything you can make out of stress tensors:

1,7 .,0T ,T? , TOT ,---

e Heavy correlators are exponentially dominated by exchange of
operators built from the stress tensor. (Dual: 3d graviton)



0. Introduction I. Spectrum > II. Entanglement entropy 16 /29

Entanglement entropy

® This is our formula for the Reny1 entropy. In general, the block f
can only be computed as a series expansion.

e But for n-->1, twist operators become light

c
H, ~ —(n—1
12(n ) +

e So for EE, we just need the Virasoro block for the case:

light heavy
\ identity /
light / \ heavy

® This is known! Fitzpatrick, Kaplan, Walters *14

f = log< © >+ (1 —ay)logz, awz\/l— id
c om c c
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This gives a closed-form answer for the entanglement entropy
In a primary state:

7)z(1—ay) (1 — ow)(] — 3%
S = ° log (22) ( 22 )( ) - conformal factors

§ oy,

e This agrees with holographic formulas. I’ll give some examples/
applications.

® There are some caveats about when this CFT calculation is reliable/
justified, which I’ll mention in a few slides.

® Since primaries + conformal transformations give a complete basis
of states, it seems plausible that this 1s close to a complete
microscopic derivation of the RT/HRT/LM/etc formula in AdS;

from CFT, in an arbitrary state.
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Application #1: Black Holes and Conical Defects
To apply our EE formula to a heavy state on a cylinder, set

. s il 3o it
(5 )
S A lo 7% sinh
"3 g{ By
27T
= A=

e Agrees with geodesic on the BTZ black hole of temperature 61#

® [Aside: not fixed by conformal symmetry, since we are on a circle]
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The non-pertubative subtlety:

® The CFT calculation was reliable 1in some finite neighborhood of

o — O

e [t must fail for some z, when the identity block in another channel
dominates:

X
X/;(\X w VS. < X X
o Y G U\w/a

® In the original OPE, this other channel must appear as terms non-
perturbative in //c. Saddles exchange dominance in z plane.

/

® The caveat: We cannot prove that we’ve accounted for all non-
perturbative contributions. We simply assume that the full, non-
perturbative answer 1s given by the dominant 1dentity block.

» Does this require further restrictions on definition of “sparse”?
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Back to the black hole:

e Previously I wrote the formula in a single OPE channel.

e The full answer (with assumption just stated) 1s therefore

SA = glog {% sinh (Wg:m)}

Crmin = min(£, 2w — £)

The CFT calculation was 1n a pure state,

p =)

So this 1s actually not dual to BTZ but to a BTZ microstate.

And indeed, 5S4 = S4-
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The two different OPE channels correspond to two different
geodesics on BTZ:

Recall 1n eternal BTZ the holonomy condition requires a
disconnected geodesic, wrapping the horizon.

® Makes no appearance in the CFT calculation.
® So the holonomy condition 1s not imposed in this case.

e This makes sense, since horizon should not contribute in a pure state.
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Multiply-wrapped geodesics?

e [n the CFT, these correspond to the identity rep in a bizarre choice of
OPE channel:

e This suggests that if we are to make sense of non-minimal surfaces, we
need some notion of “microcanonical” rather than “canonical” Renyi EE.



0. Introduction I. Spectrum > II. Entanglement entropy 23 /29

Application #2: Local quantum quench

® “Quench”: sudden change external to the system, then evolve under
the usual Hamiltonian

® We consider a “local operator quench” where we insert a local
operatorat p — (), f = ¢0

Nozaki, Numasawa, Takayanagi ’14;

|Q> — Zﬁ(?ﬁ) ‘O> Caputa, Nozaki, Takayanagi ’14
Lorentzian cartoon A
Sa(t)
A
> ¢
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This 1s different from a primary state,

------
-
. S

~ PAd
-------

But 1s related by a conformal transformation.
The entanglement Reny1 correlator 1s

Zn = (P(—10,0)0(l1,t)a(la, t)1)(29,0))

(conformal prefactor) x (1)(0)o(z, 2)a (1)1 (o0))

T

This 1s the correlator we computed before,
but now 1n Lorentzian signature.
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Therefore
F\s(1—ay) (1 — o) (] — 5%
S = Elog (22)® ( 2Z )( ) - conformal factors
0 oy,

where z 1s the cross ratio.

But if we evaluate z we find
z=1+ 0O()

Naively the answer 1s constant in time!

But not all 1’s are created equal. There are branch cuts in this
expression and we can take

TN 6:':27‘("&2’ 5 €:|:27T’LZ

independently.
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This 1s a 2-step process:
First, choose a Euclidean OPE channel:

/XN

Y &

or

<
Q
<><
Qe
A

X
o2

Second, in Lorentzian signature, z or z crosses a branch cut when
one operator passes through the light-cone of another.

How to cross these branch
cuts 1s a dictated by the
operator ordering:

(Ypoaip)
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After keeping track of these branch cuts, we find that the shape

and height of the entanglement bump:
A

Sa(t)

/[

> 1

are related to the braiding of the Virasoro vacuum block:

X ;Z F(e*™z) as z — 0

asdle
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Comparison to holography

® A holographic model of a local quench was proposed by Nozaki,
Numasawa, and Takayangi ’13: An infalling particle geometry

_

e This is the holographic dual of our calculation. The infalling
particle hits the boundary at imaginary time ¢ — 4§

® CFT results agree precisely with geodesic lengths on this
background.



0. Introduction I. Spectrum > II. Entanglement entropy 29 /29

Conclusion

Sparse CFTs 1n two dimensions have universal, gravity-like
behavior.

o A sparse CFT has large ¢ and a restricted number of light states,
C
p(A) <™ (A< 1—2)
® We also “assumed away” certain contributions to the OPE; is this
automatic or does this impose additional requirements on sparse
CFT?
Homework

d-dimensional CFTs with properties X,Y,Z have the thermodynamics,
entanglement entropy, and viscosity-to-entropy ratio of d+1-dimensional
Einstein gravity.

e Find X.Y.Z

® Derive this



