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Holographic Entanglement Entropy

A remarkably simple prescription in QFTs dual to Einstein gravity:

(Area)min

5 = Ryu & Takayanagi '06
a A 4Gy [Ry yanagi '06]
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Holographic Entanglement Entropy

A remarkably simple prescription in QFTs dual to Einstein gravity:

(Area)min

5 SA = [Ryu & Takayanagi '06]

4Gy

©

Satisfies strong subadditivity. [Headrick & Takayanagi '07]

©

Reproduces exact results for one interval in 1+1D CFTs.

[Holzhey, Larsen & Wilczek '94; Calabrese & Cardy '04]
First derived for spherical entangling surfaces. [Casini, Huerta & Myers '11]
Proven for 2D CFTs with large c. [Hartman 1303.6955; Faulkner 1303.7221]
Derived generally for Einstein gravity. [Lewkowycz & Maldacena 1304.4926]

e ¢ ¢ ¢

Bulk one-loop corrections: [Barrella, XD, Hartnoll & Martin 1306.4682]
[Faulkner, Lewkowycz, & Maldacena 1307.2892; Engelhardt & Wall 1408.3203]

Higher spin gravity: [Ammon, Castro & Igbal 1306.4338; de Boer & Jottar 1306.4347]
@ Bulk EOMs from EE first law: [Lashkari et al. 1308.3716; Faulkner et al. 1312.7856]
o

©
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© Holographic Replica Trick
e Entanglement Entropy for Higher Derivative Gravity
e Universal Terms in Holographic Renyi Entropy

@ Conclusion and Open Questions
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Replica Trick

Introduce Rényi entropy:

1
S, =— log Trp"| = Sge=1mS,=—-Trplogp
n—1 n—1

At integer n, Rényi entropy can be written in terms of partition functions:

C}_ S, = _%1 (log Z[M,] — nlog Z[M])
T n

@ M;: original (Euclidean) spacetime manifold.

@ M,: n-fold cover = n copies of M; glued
together along A in cyclic order.

@ 7: angle around OA, range extended to 27mn.

@ n-fold cover does not make much sense for
non-integer n.

@ Holographic dual side provides much “better”
analytic continuation. [Lewkowycz & Maldacena]
ot

E.g 1+1D QFT
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Holographic Dual of the n-Fold Cover

Build a bulk solution B, whose boundary is M,:

Z[Mn] = efS[Bn] + e

Basic idea

Q Use gauge-gravity duality to calculate S[B,].
@ Analytically continue it to non-integer n.
© Expand to O(n — 1) to extract EE.

Very complicated in general, can be explicitly worked out only in special
cases e.g. AdS3/CFT,. [Faulkner 1303.7221; Barrella, XD, Hartnoll & Martin 1306.4682]

@ We do not need B, explicitly.

1
@ For EE, only need S[B,] near n~ 1:| S, = _ﬁ(S[B"] — nS[Bi])

@ If we can find a family of bulk configurations interpolating between
integer n, then we can expand in n — 1!
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Replica Symmetry

The n-fold cover has Z, symmetry: 7 — 7 4+ 2.
‘Assume: Z, symmetry extends to the bulk B,,.

E Agrees with e.g. [Faulkner 1303.7221]
E Then consider the orbifold: | B, = B,/ Z,

@ Regular except at fixed points.

/
\

) @ Fixed points form codimension 2 surface C,.
E @ C,: conical defect with opening angle 27/n,
anchored at 0A: ds? = p=21=3)(dp? + p2d72) + - --

7 . @ How does this help us calculate EE?
n quotient By construction: S[B,] = nS[B,] at integer n

n

Cy = Sy =—— (SIB.] - S[Bul)

Note: S[B,] does not include contributions from C,.
Now plausible that we can analytically continue B,.
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Analytic Continuation of the Orbifold B,

There are two equivalent methods.

Solve all EOMs and demand the metric near C, as

ds> = p=2(dp® + p*d7°) + (gj + 2Kajx?)dy'dy’ + - --

@ An unconventional “IR" boundary condition.
o Justified by considering integer n and impose Z,, symmetry.

@ In general has conical defect with deficit 27me = 27 (1 — 1).

Replace C,, by a codimension 2 brane! Solve all EOMs resulting from

Stotal = SEH + S = —

/dDX\/ER+ . dy/g

1
8 GN 4GN

Cosmic branes are “straight” allowing us to glue B, back to B, for n € Z.
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Holographic Replica Trick

e Entanglement Entropy for Higher Derivative Gravity

Universal Terms in Holographic Renyi Entropy

Conclusion and Open Questions
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Holographic Entanglement for Higher Derivative Gravity

. ?2?77?7) .
‘ SA _ (Area)mln 5 — ( : -)mln

=—— =154 ~
‘? 4Gy 4Gy
After all, string theory produces o’ corrections.
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Holographic Entanglement for Higher Derivative Gravity

‘ (Area)min (7??)m|n
SA SA

=~ M

’0‘ 4Gy 4Gy

After all, string theory produces o’ corrections.

@ Analogous to: Bekenstein-Hawking Entropy = Wald Entropy for BHs:

oL
d
SWald - _27T/d Y\faR Euptro
pnpvo
[Wald '93]
@ In general, Swalq cannot be Sge. [Hung, Myers & Smolkin '11]

@ Even before Wald, there existed a different formula S, for BH entropy
in Lovelock gravity. [Jacobson & Myers '93]

@ They differ only by extrinsic curvature terms (=0 for Killing horizons).

@ For Gauss-Bonnet, Sy passes consistency checks as Sgg. [Hung, Myers &
Smolkin '11]
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Entropy Formula for Higher Derivative Gravity

General entropy formula for L(Ry e ): [XD 1310.5713]

%L 8K,ii Kzui
-9 d zij Nz
SEE 4 / d y\/7 { 8RzZzZ * Z <8R21218Rzkzl>a qa + 1

Wald's formula “Anomaly” from extrinsic curvature

@ Encompasses previous results of special cases (e.g. giving S for
Gauss—Bonnet): [Fursaev, Patrushev, & Solodukhin 1306.4000; Chen &
Zhang 1305.6767; Bhattacharyya, Sharma, & Sinha 1305.6694, 1308.5748; ...]

@ Can show minimization prescription for at least 3 classes of
examples: f(R), Lovelock, general 4-derivative gravity.

@ Covariant version exists.

@ Although derived for entanglement entropy, this formula also applies
for BH entropy, generalizing Wald's formula to non-stationary BHs.

ot

Xi Dong (Stanford University) 11/ 23



oL 0L 8K, Kzui
=27 [ d¢ i
SEE ﬂ—/ Y\/E { 8/'-\)2222 i g <8Rzizj8R2kfl > @ (e =F 1

Wald's formula “Anomaly” from extrinsic curvature

-

Outline for derivation

Q Calculate Sop (bulk with conical deficit)
Q Take small n — 1 limit, conical deficit e = n — 1.

@ First-order variation of S, localizes at defect: from either d-function
or potential logarithmic divergences:

6l’( = (55 / d 62 € ¢
zizj ~ — N\zjj on X > ST
R p J-F p ppzp
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Holographic Replica Trick

Entanglement Entropy for Higher Derivative Gravity

© Universal Terms in Holographic Renyi Entropy

Conclusion and Open Questions
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Logarithmic Terms Are Universal

In even-dimensional CFTs, certain logarithmically divergent terms are
universal, i.e. they do not depend on much of the theory besides a few
numbers such as anomaly coefficients.

@ Partition function:
log Z = (power divergences) + log e/ d?x\/g A+ (finite)

C a C
= 1672 E(4) 1672 I(4)

@ Entanglement entropy across a codimension-2 surface ¥:
c
See(d =2) ~ _6 Volume (X) log €

— 1) ~ a < 2 1 2 ~ab
SEE(d = 4) log € |:2ﬂ_ / Ry + 27‘( (TI"K 2(TI‘K) C ab>:|

[Solodukhin '08]
i

Can derives these by PBH (Penrose-Brown—Henneaux) transformations.
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Universal Terms in Renyi Entropies

Renyi entropies S,

@ Contain richer information about p than Sgg.
o Are interesting at special n: n = 1/2 (negativity), n =0, n — oc.

@ Have nice holographic interpretation in terms of cosmic branes.

They also have universal logarithmic terms in even dimensions.

S, ~ loge [72’2(7:)/sz + '3’2(7:)/2 (TrK2 — ;(TrK)2> — %:) /z Cabab}

[Fursaev '12]
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Universal Terms in Renyi Entropies for 4D CFTs

f2(n) is computed by considering a spherical X in flat space:

@ The n-fold cover may be conformally mapped to a hyperboloid
H3 x S, with the size of S* being 3 = 27n. [Casini, Huerta & Myers

'11]

@ fy(n) is completely determined by log Z[H? x S'] &< Volume (H?).
@ This can be computed holographically as the dual geometry is a
hyperbolic black hole.

Xi Dong (Stanford University)



S, ~ log e {fz(;) /Z Ry + % /z (TrK2 - ;(%Kf) - ’22(7:) /z cabab}

What about f,(n) and f.(n)?

@ Not much was known about them until [Lewkowycz & Perlmutter
1407.8171] proposed that f.(n) may be derived from f,(n):

n

fe(n) = ——7 [a—fa(n) = (n = ()] -

n—

@ It has also been conjectured that f,(n) = f(n). [Lee, McGough & Safdi
1403.1580]

@ | will propose a holographic derivation of these relations.
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Deformed Hyperboloid

Similar to how we map the spherical case to a hyperboloid H3 x S':

1 dp P T g

ds; = 2 {sz + gijdy dyf} +dr?,  gidy'dy = dQ3
We can map the case of arbitrary ¥ in arbitrary background to a
deformed hyperboloid:

</ -

1 dp? o
2 _ . .y 33y b i
d54 = F |:1_~_p2 + (g,J + 2K3UX + Qable X ) dy dyJ:|
+ (14 Tp?)d7* 4 2U;drdy’ + (higher orders), x1? = petiT
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Partition Function on Deformed Hyperboloid

1 dp? oo
dsi = — | == + (g + 2Kayx” + Qabjxx") dy'dy’
tT [1+p2+(g’+ X7 QuipToC) dy y]

+ (14 Tp?)d7r? 4 2U;drdy’ + (higher orders), x12 = petiT

Write it as the undeformed metric plus a perturbation:
Buv = g;(L(z)/) + 5g,uz/

The CFT partition function is

1
log Z = log Z(O)—i—/ 6gW(T“”>—|—§ /6gMU6gpg<T’w T*9)+(higher orders)

o log Z( ~ Volume (H?) with cutoff p > € has quadratic and
logarithmic divergences.

@ Our goal is to extract logarithmic divergences in the perturbation.

Xi Dong (Stanford University) 19 / 23



1 [ dp? o
ds; = 5 | —— + (gj + 2Kayx° ix°x") dy'dy’
s, 2 {1+p2+(gj+ aij X +Qabjxx) ly' dy

+ (14 Tp?)d7r* 4 2U;drdy’ + (higher orders), xb? = petiT

1
log Z = log 7O+ / 08 (T )+ / 08, 08p0 (T TP7)+(higher orders)

o [6g.,(TH") produces log e for terms in dg,, quadratic in p. The
coefficient of log € is schematically

—fc(n)/ (T+@%) = —fc(n)/ [cabab L TeK? 4 202
b3 b 3

@ f.(n) is determined by (TH¥) on the hyperboloid with 8 = 27n,
which can be computed holographically.

@ Indeed it is related to f,(n) by

n

feln) =~ [a = f(n) — (n — Df(n)] .

Xi Dong (Stanford University)
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> 1

S = —
4 2
p

dp?
1+ p?
+ (14 Tp?)d7* 4 2U;drdy’ + (higher orders),

+ (g,-j + 2K,iix? + QabinaXb) dy'dy’

X

1,2

= pe:tir

1
log Z = log Z()+ /6g,w< VY4 5/5g,,,,6gp0<7'“”Tp">+(higher orders)

o [6gu,08,0(TH TP7) produces log e for terms in dg,, linear in p.

@ They produces terms involving K2 (and U?).

@ Computing (T#” T*9) holographically gives the conjectured relation
fo(n) in the universal structure:

fb(n) =

Sn ~ loge [

f(n)
27

/sz + f‘;(;) /z <TrK2 - ;(TrK)2> -

Xi Dong (Stanford University)
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2 1 dp2 a a b igJ
= + (gij + 2Kajix? + Qabijxx ) dy'dy’

%= 5171 2
p [1+p
+ (14 Tp?)d7* 4 2U;drdy’ + (higher orders), x12 = petiT

1
log Z = log Z()+ /6g,,y< VY4 5/5g,,,,5gp0<7'“”Tp”>+(higher orders)

o [068u,08,0(TH TP7) produces log e for terms in dg,, linear in p.
@ They produces terms involving K2 (and U?).

@ Computing (T#” T*9) holographically gives the conjectured relation
fp(n) = f-(n) in the universal structure:

S, ~ loge {f;;)/ZR f2(ﬂ)/z<TrK2—;(TrK)2>

Quick “derivation”: (T TK) % (g"kgﬂ + gi/gjk) _ %g gt J

Cabab:|

Contracting with Ku;K?,, we get fy(n) [TrK? — 1(TrK) ]
Combining this with —f.(n)TrK?, and requiring |t to be
o [TrK? — 1(TrK)?], we find fo(n) = 2fc(n) = f5(n) = fe(n).
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Conclusion and Open Questions

@ There is a general formula that, evaluated on the conical defect G,
gives the holographic EE in higher derivative gravity:

oL oL 8K, Kzk
_ d zij Nz
SEE B 27T/ d y\/g { aszz? + ; <6Rzizj8R2k2I)a da +1

Wald's formula “Anomaly” from extrinsic curvature

© Logarithmic terms in Renyi entropies for 4D CFTs have a universal
structure that can be computed at least holographically:

o~ toge | S [ e+ B [ (e - ) - 2 [ o]

@ Many open questions.

@ How do we “enjoy” these results (in the big picture)?
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Details on the Decomposition of the Riemann Tensor

ds® = e [dzdz + €A T(2dz — 2d2)?]+(gj + 2Kaijx° + Qaniix*x") dy'dy’
+ 2ie*A (U; + Vaix?) (z2dz — zdz)dy' +--- . (1)

AAT A~ ~
Rabed = 12" T pécd
2A A
Rabci =3e €ab VCi7

Rabij = 2€242.5(0;U; — 9;U;) + g™ (Kaji Kt — Kai Kajt) »

Rainj = €A [26(0:U; — 0;U;) + 485 Ui Uj] + & Kaji Kbit — Qabij
Raiik = OkKaij — ¥ Kajt + 282687 K Uk — (j < k),

—2A~ab
Rikji = rigr + e~ ="8% (KaitKbjk — KaijKpkr) »
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Details on the Decomposition of the Riemann Tensor

ds? = e [dzdz + €A T(Zdz — zd2)?]+(gj + 2Kaijx* + Qapixx") dy'dy’
+ 2ie®A (U; + Viaix?) (zdz — zdz)dy' + - . (2)

Rabij = Rabij + & (Kajx Kbit — Kaix Kijr) »
Rainj = R + & Kaju Kbt — Qanij »
Riji = rgi + &°°(Kain Kojx — KaijKoni)

Rabij = 262Aé\ab(6in — 8J-U,-) 5

Ranj = €2 [625(0:U; — 0;U;) + 48, Ui U)]
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Details on the Squashed Cone

ds? = dp? + j [1+p2(9 (1 v i’”T)] d7?
+ [glj + O (p pneilnT)] dy d_y +p20 (17ﬁ2’ﬁnei/n7:) d%dy’ (3)

0(1 p2 ﬁne:tmr) i (00 e I52m> p\k|n :tikm”',

ﬁl

d52 — p72e {dp2 +p2 [1 +p27260 (1’p27267pe:ti7'):| d7'2}
+ [gu +0O (p2—2e7peii7')] dyldyj +p2—250 (1,p2_2€,peii7) deyi.
(4)

0(1,p2_26,,06i”— = Z (Z Chkm p(2 2€)m >p|keiik7'7

k=—occ \m=0
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Caveat: in the prescription for g, there might be an ambiguity about
how to count Q,z;. We made a particular assumption about the analytic
continuation of the Z,-symmetric metric to non-integer n:

G,'j =gj+ 2Kzijz + 2K§,’j2 + szijZ2 + 2Qz§U(22)1/n + -
In parent space: w" w" w2" ww

But can there be a term 2@22,-1-22 ~ ww"? Answer should come from EOM.

Xi Dong (Stanford University) 5/ 14



Details on Lovelock gravity

00— [ aorvEu

L(2p) _ i(;NlPlIQPZ"'MPPPR o1 p nor R Vpop

- op V1011202 VpTp "ty p1 H2p2 HpPp

i(ss(zp) _ EGHVLQP) . Lng)uplulo'l R"

\/E 6G/u/ 2 p1V101

E(2P)# _ 1 6HH1P1N2P2“'HPPPR v1o1 R V2072 ‘R VpOp
v

T op+l V1911202 Vpdp uipy H2p2 T Buppp

E@P)nv —

[Reve _ i S
¢ VG 0Rupve
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Details on Minimization: f(R) Gravity

oL
— d
SEE——47T/O’ YVE 7

Claim: Minimizing this gives the location of C, at n =1

@ Proof 1: Transform to Einstein gravity + scalar.

@ Proof 2: Cosmic brane method:
Stotal = A / dPxVGRP — 4mp)e / d?y/gRP?
=\ / dPxV GRP — Amphe / dPx\/gRP715(x*, x?)

Solve the most singular terms in EOM:

6Stota1

e~ PVaVeRPT! = 4mp(p — 1RPZV, V40 (x,x%) + -+
iz

Therefore R ~ —2V2A needs to produce 478(x*, x?) = A = —clog p.

Xi Dong (Stanford University) [T



Details on Minimization: General 4-Derivative Gravity

L= MR?+ MR, R"™ + \3Rypo RMP7

1 ’
See = —47r/ d’y\/g {2A1R + X (R"a - 2K3K"’) +2X3 (R, — Ka,-jKaU)}

@ Can also show minimizing this gives the location of C, at n = 1.
@ Use the cosmic brane method.

@ Extrinsic curvature terms show up to compensate

§S
G,

D V.V, R:izj O (V.V,V:A)Ksj

in EOM by providing e.g. V,6(x, x?)K3j;.
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Details on Minimization: General Lovelock Gravity

1
sz(R) — 75ﬂ1p1,uz/)2 prpR V101 R V202 |, R VpOp

op V1011202 "VpOp "y p1 H2p2 HpPp

See = —47TP/ddy\/§L2p—2(f)

Cosmic brane method

@ Lovelock is simple because EOM is 2-derivative, no VR.
@ Simply match coefficients of §(x*, x?) to linear order in e.

@ "Explains” why Sgg depends only on d-dim’l intrinsic curvature r.

Boundary condition method (generalizing )

The zz component of “Einstein equation” is potentially divergent:
EZ _ 1 52M191M2F)2"‘le)pR no1p 1202 R VpOp
Z T optl TEH1I01¥202 VpTp T py H2p2 HpPp
~ € J ’:’:lkll"ZkZ"_"’pflkpfl - hhp b R. Jp—1lp—1
zi “jjithphjp—1lp—1 ik ko ip—1Kp—1
Precisely the equation 5;;0_5 2zij = 0 from minimizing Seg!
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Details on One-Loop Bulk Correction

@ Given by the functional determinant of the operator describing
quadratic fluctuations of all the bulk fields.

@ For AdS3/T there is an elegant expression. [Giombi, Maloney & Yin
0804.1773; Yin 0710.2129]

For metric fluctuations:

S
|Og Z|onef|oop == Z Z |0g |1 - q’T‘

yEP m=2

o P is a set of representatives of the primitive conjugacy classes of I'.
© gy is defined by writing the two eigenvalues of v € ' € PSL(2,C) as
+1/2 .
gy /7 with |g,] < 1.

o Similar expressions exist for other bulk fields.
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Nice feature 2: at integer n the sum can be done explicitly in terms of
rational functions of n:

n—1 8 2 8 10
. n csc® 4, (n*—1)csc®+csc® o 6
Sn|one—|oop - = n_1 ; [256n8x T 128110 X~ + O(X )

(n+1)(n® +11)(3n* 4 100 + 227) , 5
= 362880007 X"+ 00)

mk
where csc =csc| —
n

(4) Analytically continue the one-loop result to n — 1:

5 x4 . 2x5 . 15x° . x' n 167x8 + O 9)
g = — - e ~an 2R02A X
one-loop 630 693 4004 234 36936

Exactly agrees with known results at leading order:
S_ N\ (5)2’7 v T(2h+1)

2 T (2h n %) + - [Calabrese, Cardy & Tonni '11]
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Details on One-Loop Corrections in the Torus Case

Nice feature: only “single-letter” words {L;, L; '} contribute to the

leading order in the low / high T limit.

i

Thermal AdS: 1 2sin4 (?L) e e
Sn|one—|oop n 1 [n3 s|n4 (:71_) —2n|le 7R +0 (e TR)
i * 8wl L o B
S|one—|oop = |:_7; cot <7TR) + 8:| e "+ 0O (e_%?>
= Sa— Sz =—8mcot (F;A) e_%—k(’)(e_%)

Agrees (morally) with a free field calculation in [Herzog & Spillane 1209.6368]. J

BTZ: L
_ 1 2sinh™(w TL) _anTR 6nTR
Sn|one-|oop - _n—l [n3sinh4 (WTTL) —2n‘| e +O(e )

lone-toop = [—87 TLcoth(m TL) + 8] e TR L 0 (efﬁﬂTR)
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Where to Evaluate the Entropy Formula?
Should evaluate it at the conical defect C, as n — 1

@ (; is well-defined in principle but hard to find using its definition.

@ Can it be found by minimizing some functional?

@ In the cosmic brane method, we ask: What is Sg that creates a
conical defect in higher derivative gravity, to linear order in €?

In particular, can this simply be Sgg that we saw?

Yes, at least for three classes of examples:

: [XD 1310.5713]
° f(R) gravity [Bhattacharyya, Sharma

@ General 4-derivative gravity & Sinha 1308.5748]

@ Lovelock gravity
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One-Loop Corrections to Ryu-Takayanagi

Ly Lo

[Barrella, XD, Hartnoll & Martin 1306.4682]:

x4 2x5 15x° x7 167x8

=630 7693 2004 T 234 " 36936

+O(x%)

Exactly agrees with CFT predictions:
[Calabrese, Cardy & Tonni '11; Chen & Zhang 1309.5453]

Can also generalize to finite temperature:

» e

%
).
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